Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(3): 269-279, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689196

RESUMO

The plume of Enceladus is thought to originate from the dispersion of a liquid source beneath the icy crust. Cryovolcanic activity on Enceladus may present a direct way of accessing material originating from the potentially habitable subsurface ocean. One way to test the hypothesis of whether life is present within the ocean of Enceladus would be to investigate the plume material for the presence of microbial life. In this study, we investigated the entrainment of Bacillus subtilis within Enceladus-like fluids under boiling conditions caused by exposure of the fluids to low pressure. We show that boiling, associated with exposure of a fluid to low pressure, works as a mechanism for dispersing bacteria in Enceladus plume-like environments. Exposure of Enceladus-type fluids (0.01-0.1 molal Na2CO3 and 0.05-0.2 molal NaCl) to low pressure (5 mbar) results in the dispersion of bacteria in droplets that evaporate to produce particles of salt. We find that, for particles with radius (r) ≤ 10 µm, the number of dispersed particles containing cells was between 7.7% and 10.9%. However, for larger particles 10 < r ≤ 50 µm, 64.4% and 56.4% contained cells for lower and upper end-member solutions, respectively. Our results suggest that the gravity-induced size sorting of plume particles will result in plume deposits closer to the vent source containing a larger volume of biological material than within the plume. If life is present in the ocean of Enceladus, we would expect that it would be effectively entrained and deposited on the surface; therefore, it would be accessible with a surface-lander-based instrument.


Assuntos
Exobiologia , Sódio , Exobiologia/métodos , Cloreto de Sódio , Bactérias
2.
J R Soc Interface ; 17(171): 20200588, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33081642

RESUMO

In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ([Formula: see text]) and total methane production ([Formula: see text]) despite an increase in peak growth rates ([Formula: see text]) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Biomassa , Metabolismo Energético , Temperatura
3.
Astrobiology ; 20(9): 1121-1149, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32876492

RESUMO

The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.


Assuntos
Planeta Terra , Evolução Química , Meio Ambiente Extraterreno/química , Meteoroides , Origem da Vida , Fenômenos Geológicos
4.
Sci Rep ; 9(1): 8229, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160623

RESUMO

Seasonal changes in methane background levels and methane spikes have been detected in situ a metre above the Martian surface, and larger methane plumes detected via ground-based remote sensing, however their origin have not yet been adequately explained. Proposed methane sources include the UV irradiation of meteoritic-derived organic matter, hydrothermal reactions with olivine, organic breakdown via meteoroid impact, release from gas hydrates, biological production, or the release of methane from fluid inclusions in basalt during aeolian erosion. Here we quantify for the first time the potential importance of aeolian abrasion as a mechanism for releasing trapped methane from within rocks, by coupling estimates of present day surface wind abrasion with the methane contents of a variety of Martian meteorites, analogue terrestrial basalts and analogue terrestrial sedimentary rocks. We demonstrate that the abrasion of basalt under present day Martian rates of aeolian erosion is highly unlikely to produce detectable changes in methane concentrations in the atmosphere. We further show that, although there is a greater potential for methane production from the aeolian abrasion of certain sedimentary rocks, to produce the magnitude of methane concentrations analysed by the Curiosity rover they would have to contain methane in similar concentrations as economic reserved of biogenic/thermogenic deposits on Earth. Therefore we suggest that aeolian abrasion is an unlikely origin of the methane detected in the Martian atmosphere, and that other methane sources are required.

5.
Astrobiology ; 19(3): 369-386, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840503

RESUMO

The limitations placed upon human explorers on the surface of Mars will necessitate a methodology for scientific exploration that is different from standard approaches to terrestrial fieldwork and prior crewed exploration of the Moon. In particular, the data transmission limitations and communication latency between Earth and Mars create a unique situation for surface crew in contact with a terrestrial science team. The BASALT research program simulated a series of extravehicular activities (EVAs) in Mars analog terrains under various Mars-relevant bandwidth and latency conditions to investigate how best to approach this problem. Here we discuss tactical decision-making under these conditions, that is, how the crew on Mars interacts with a team of scientists and support personnel on Earth to collect samples of maximum scientific interest. We describe the strategies, protocols, and tools tested in BASALT EVAs and give recommendations on how best to conduct human exploration of Mars with support from Earth-based scientists. We find that even with scientists supporting them, the crew performing the exploration must be trained in the appropriate scientific disciplines in order to provide the terrestrial scientists with enough information to make decisions, but that with appropriate planning and structure, and tools such as a "dynamic leaderboard," terrestrial scientists can add scientific value to an EVA, even under Mars communication latency.


Assuntos
Astronautas/psicologia , Comunicação , Tomada de Decisões , Marte , Comunicações Via Satélite , Planeta Terra , Exobiologia/métodos , Meio Ambiente Extraterreno , Humanos , Astronave , Fatores de Tempo
6.
Astrobiology ; 19(3): 387-400, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30840508

RESUMO

During the BASALT research program, real (nonsimulated) geological and biological science was accomplished through a series of extravehicular activities (EVAs) under simulated Mars mission conditions. These EVAs were supported by a Mission Support Center (MSC) that included an on-site, colocated Science Support Team (SST). The SST was composed of scientists from a variety of disciplines and operations researchers who provided scientific and technical expertise to the crew while each EVA was being conducted (intra-EVA). SST management and organization developed under operational conditions that included Mars-like communication latencies, bandwidth constraints, and EVA plans that were infused with Mars analog field science objectives. This paper focuses on the SST workspace considerations such as science team roles, physical layout, communication interactions, operational techniques, and work support technology. Over the course of BASALT field deployments to Idaho and Hawai'i, the SST team made several changes of note to increase both productivity and efficiency. For example, new roles were added for more effective management of technical discussions, and the layout of the SST workspace evolved multiple times during the deployments. SST members' reflexive adjustments resulted in a layout that prioritized face-to-face discussions over face-to-data displays, highlighting the importance of interpersonal communication during SST decision-making. In tandem with these workspace adjustments, a range of operational techniques were developed to help the SST manage discussions and information flow under time pressure.


Assuntos
Astronautas/psicologia , Atividade Extraespaçonave , Marte , Simulação de Ambiente Espacial/métodos , Comunicação , Tomada de Decisões , Técnicas de Apoio para a Decisão , Eficiência , Havaí , Humanos , Idaho , Relações Interpessoais , Comunicações Via Satélite , Simulação de Ambiente Espacial/psicologia
7.
Sci Rep ; 7(1): 8775, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821776

RESUMO

The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.

8.
Astrobiology ; 16(1): 89-117, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26741054

RESUMO

Habitability is a widely used word in the geoscience, planetary science, and astrobiology literature, but what does it mean? In this review on habitability, we define it as the ability of an environment to support the activity of at least one known organism. We adopt a binary definition of "habitability" and a "habitable environment." An environment either can or cannot sustain a given organism. However, environments such as entire planets might be capable of supporting more or less species diversity or biomass compared with that of Earth. A clarity in understanding habitability can be obtained by defining instantaneous habitability as the conditions at any given time in a given environment required to sustain the activity of at least one known organism, and continuous planetary habitability as the capacity of a planetary body to sustain habitable conditions on some areas of its surface or within its interior over geological timescales. We also distinguish between surface liquid water worlds (such as Earth) that can sustain liquid water on their surfaces and interior liquid water worlds, such as icy moons and terrestrial-type rocky planets with liquid water only in their interiors. This distinction is important since, while the former can potentially sustain habitable conditions for oxygenic photosynthesis that leads to the rise of atmospheric oxygen and potentially complex multicellularity and intelligence over geological timescales, the latter are unlikely to. Habitable environments do not need to contain life. Although the decoupling of habitability and the presence of life may be rare on Earth, it may be important for understanding the habitability of other planetary bodies.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planetas
9.
Geobiology ; 10(5): 434-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22694082

RESUMO

The weathering of volcanic rocks contributes significantly to the global silicate weathering budget, effecting carbon dioxide drawdown and long-term climate control. The rate of chemical weathering is influenced by the composition of the rock. Rock-dwelling micro-organisms are known to play a role in changing the rate of weathering reactions; however, the influence of rock composition on bio-weathering is unknown. Cyanobacteria are known to be a ubiquitous surface taxon in volcanic rocks. In this study, we used a selection of fast and slow growing cyanobacterial species to compare microbial-mediated weathering of bulk crystalline rocks of basaltic and rhyolitic composition, under batch conditions. Cyanobacterial growth caused an increase in the pH of the medium and an acceleration of rock dissolution compared to the abiotic controls. For example, Anabaena cylindrica increased the linear release rate (R(i)(l)) of Ca, Mg, Si and K from the basalt by more than fivefold (5.21-12.48) and increased the pH of the medium by 1.9 units. Although A. cylindrica enhanced rhyolite weathering, the increase in R(i)(l) was less than threefold (2.04-2.97) and the pH increase was only 0.83 units. The R(i)(l) values obtained with A. cylindrica were at least ninefold greater with the basalt than the rhyolite, whereas in the abiotic controls, the difference was less than fivefold. Factors accounting for the slower rate of rhyolite weathering and lower biomass achieved are likely to include the higher content of quartz, which has a low rate of weathering and lower concentrations of bio-essential elements, such as, Ca, Fe and Mg, which are known to be important in controlling cyanobacterial growth. We show that at conditions where weathering is favoured, biota can enhance the difference between low and high Si-rock weathering. Our data show that cyanobacteria can play a significant role in enhancing rock weathering and likely have done since they evolved on the early Earth.


Assuntos
Cianobactérias/metabolismo , Microbiologia Ambiental , Minerais/química , Silicatos/química , Meios de Cultura/química , Elementos Químicos , Concentração de Íons de Hidrogênio
10.
Astrobiology ; 12(2): 115-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22283409

RESUMO

The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.


Assuntos
Vida , Luz , Fotossíntese , Astros Celestes
11.
Astrobiology ; 11(6): 537-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21767151

RESUMO

Meteorite impacts are among the very few processes common to all planetary bodies with solid surfaces. Among the effects of impact on water-bearing targets is the formation of post-impact hydrothermal systems and associated mineral deposits. The Haughton impact structure (Devon Island, Nunavut, Canada, 75.2 °N, 89.5 °W) hosts a variety of hydrothermal mineral deposits that preserve assemblages of primary hydrothermal minerals commonly associated with secondary oxidative/hydrous weathering products. Hydrothermal mineral deposits at Haughton include intra-breccia calcite-marcasite vugs, small intra-breccia calcite or quartz vugs, intra-breccia gypsum megacryst vugs, hydrothermal pipe structures and associated surface "gossans," banded Fe-oxyhydroxide deposits, and calcite and quartz veins and coatings in shattered target rocks. Of particular importance are sulfide-rich deposits and their associated assemblage of weathering products. Hydrothermal mineral assemblages were characterized structurally, texturally, and geochemically with X-ray diffraction, micro X-ray diffraction, optical and electron microscopy, and inductively coupled plasma atomic emission spectroscopy. Primary sulfides (marcasite and pyrite) are commonly associated with alteration minerals, including jarosite (K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6), rozenite FeSO(4)·4(H(2)O), copiapite (Fe,Mg)Fe(4)(SO(4))(6)(OH)(2)·20(H(2)O), fibroferrite Fe(SO(4))(OH)·5(H(2)O), melanterite FeSO(4)·7(H(2)O), szomolnokite FeSO(4)·H(2)O, goethite α-FeO(OH), lepidocrocite γ-FeO(OH) and ferrihydrite Fe(2)O(3)·0.5(H(2)O). These alteration assemblages are consistent with geochemical conditions that were locally very different from the predominantly circumneutral, carbonate-buffered environment at Haughton. Mineral assemblages associated with primary hydrothermal activity, and the weathering products of such deposits, provide constraints on possible microbial activity in the post-impact environment. The initial period of active hydrothermal circulation produced primary mineral assemblages, including Fe sulfides, and was succeeded by a period dominated by oxidation and low-temperature hydration of primary minerals by surface waters. Active hydrothermal circulation can enable the rapid delivery of nutrients to microbes. Nutrient availability following the cessation of hydrothermal circulation is likely more restricted; therefore, the biological importance of chemical energy from hydrothermal mineral deposits increases with time. Weathering of primary hydrothermal deposits and dissolution and reprecipitation of mobile weathering products also create many potential habitats for endolithic microbes. They also provide a mechanism that may preserve biological materials, potentially over geological timescales.


Assuntos
Microbiologia Ambiental , Fontes Termais , Meteoroides , Minerais/química , Exobiologia , Compostos de Ferro/análise , Marte , Nunavut , Sulfetos/análise
12.
Geobiology ; 8(5): 446-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20718869

RESUMO

The weathering of volcanic minerals makes a significant contribution to the global silicate weathering budget, influencing carbon dioxide drawdown and long-term climate control. Basalt rocks may account for over 30% of the global carbon dioxide drawdown in silicate weathering. Micro-organisms are known to play a role in rock weathering yet the genomics and genetics of biological rock weathering are unknown. We apply DNA microarray technology to determine putative genes involved in weathering using the heavy metal-resistant organism, Cupriavidus metallidurans CH34; in particular we investigate the sequestering of iron. The results show that the bacterium does not depend on siderophores. Instead, the up-regulation of porins and transporters which are employed concomitantly with genes associated with biofilm formation suggests that novel passive and active iron uptake systems are involved. We hypothesize that these mechanisms induce rock weathering by changes in chemical equilibrium at the microbe-mineral interface, reducing the saturation state of iron. We also demonstrate that low concentrations of metals in the basalt induce heavy metal-resistant genes. Some of the earliest environments on the Earth were volcanic. Therefore, these results not only elucidate the mechanisms by which micro-organisms might have sequestered nutrients on the early Earth but also provide an explanation for the evolution of multiple heavy metal resistance genes long before the creation of contaminated industrial biotopes by human activity.


Assuntos
Proteínas de Bactérias/genética , Cupriavidus/metabolismo , Farmacorresistência Bacteriana/genética , Perfilação da Expressão Gênica , Metais Pesados/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Bactérias/metabolismo , Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Cupriavidus/crescimento & desenvolvimento , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Islândia , Ferro/metabolismo , Ferro/farmacologia , Metais Pesados/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Silicatos/química , Regulação para Cima
13.
Geobiology ; 8(4): 293-308, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20456500

RESUMO

Evaporitic deposits are a globally widespread habitat for micro-organisms. The microbe-mineral environment in weathered and remobilized gypsum from exposed mid-Ordovician marine evaporite beds in the polar desert of Devon Island, Nunavut, Canadian High Arctic was examined. The gypsum is characterized by internal green zones of cyanobacterial colonization (dominated by Gloeocapsa/Aphanothece and Chroococcidiopsis spp. morphotypes) and abundant black zones, visible from the surface, that contain pigmented cyanobacteria and fungi. Bioessential elements in the gypsum are primarily provided by allochthonous material from the present-day polar desert. The disruption, uplift and rotation of the evaporite beds by the Haughton meteorite impact 39 Ma have facilitated gypsum weathering and its accessibility as a habitat. No cultured cyanobacteria, bacteria and fungi were halophilic consistent with the expectation that halophily is not required to persist in gypsum habitats. Heterotrophic bacteria from the evaporite were slightly or moderately halotolerant, as were heterotrophs isolated from soil near the gypsum outcrop showing that halotolerance is common in arctic bacteria in this location. Psychrotolerant Arthrobacter species were isolated. No psychrophilic organisms were isolated. Two Arthrobacter isolates from the evaporite were used to mediate gypsum neogenesis in the laboratory, demonstrating a potential role for microbial biomineralization processes in polar environments.


Assuntos
Bactérias/isolamento & purificação , Sulfato de Cálcio/metabolismo , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Canadá , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fungos/classificação , Fungos/citologia , Fungos/metabolismo , Microscopia , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Astrobiology ; 10(1): 69-76, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307183

RESUMO

The ultimate goal of terrestrial planet-finding missions is not only to discover terrestrial exoplanets inside the habitable zone (HZ) of their host stars but also to address the major question as to whether life may have evolved on a habitable Earth-like exoplanet outside our Solar System. We note that the chemical evolution that finally led to the origin of life on Earth must be studied if we hope to understand the principles of how life might evolve on other terrestrial planets in the Universe. This is not just an anthropocentric point of view: the basic ingredients of terrestrial life, that is, reduced carbon-based molecules and liquid H(2)O, have very specific properties. We discuss the origin of life from the chemical evolution of its precursors to the earliest life-forms and the biological implications of the stellar radiation and energetic particle environments. Likewise, the study of the biological evolution that has generated the various life-forms on Earth provides clues toward the understanding of the interconnectedness of life with its environment.


Assuntos
Evolução Biológica , Vida , Planetas , Meio Ambiente , Íons , Sistema Solar
15.
Antonie Van Leeuwenhoek ; 96(4): 515-26, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19669589

RESUMO

A novel actinobacterium, designated CB31(T), was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l(-1)) and MgCl2 x 6 H2O (3 g l(-1)). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was LL: -diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H(4)) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45 degrees C, with an optimum between 35 and 40 degrees C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31(T) is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31(T) (=NCIMB 14440(T) = DSM 21240(T)).


Assuntos
Propionibacteriaceae/classificação , Propionibacteriaceae/isolamento & purificação , Microbiologia do Solo , Aerobiose , Anaerobiose , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Locomoção , Dados de Sequência Molecular , Fosfolipídeos/análise , Filogenia , Propionibacteriaceae/genética , Propionibacteriaceae/fisiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Esporos Bacterianos , Temperatura , Vitamina K 2/análise
16.
Astrobiology ; 9(1): 1-22, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19203238

RESUMO

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Origem da Vida , Planetas , Voo Espacial , Astronomia , Teorema de Bayes , Processamento de Imagem Assistida por Computador , Astronave , Espectrofotometria Infravermelho , Astros Celestes
17.
Geobiology ; 7(1): 50-65, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19200146

RESUMO

Alteration textures were examined in subglacial (hyaloclastite) deposits at Valafell, Southern Iceland. Pitted and 'elongate' alteration features are observed in the glass similar to granular and tubular features reported previously in deep-ocean basaltic glasses, but elongate features generally did not have a length to width ratio greater than five. Elongate features were found in only 7% of surfaces. Crystalline basalt clasts, which are incorporated into the hyaloclastite, did not display elongate structures. Pitted alteration features were poorly defined in crystalline basalt, comprising only 4% of the surface compared to 47% in the case of basaltic glass. Examination of silica-rich glass (obsidian) and rhyolite similarly showed poorly defined pitted textures that comprised less than 15% of the surface and no elongate features were observed. These data highlight the differences in alteration textures between terrestrial basaltic glass and previously studied deep-ocean and subsurface basaltic glass, and the important role of mineralogy in controlling the type and abundance of alteration features. The hyaloclastite contains a diverse and abundant bacterial population, as determined by 16S rDNA analysis, which could be involved in weathering the glass. Despite the presence of phototrophs, we show that they were not involved in the production of most alteration textures in the basaltic glass materials we examined.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Microbiologia do Solo , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Vidro , Islândia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Erupções Vulcânicas
18.
Science ; 320(5884): 1740-5, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18583604

RESUMO

Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Sedimentos Geológicos/microbiologia , Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/química , Temperatura Alta , Salinidade , Água do Mar , Tempo , Virginia
19.
Astrobiology ; 6(4): 668-75, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16916290

RESUMO

Photosynthesis on Earth can occur in a diversity of organisms in the photosynthetically active radiation (PAR) range of 10 nmol of photons m(-2) s(-1) to 8 mmol of photons m(-2) s(-1). Similar considerations would probably apply to photosynthetic organisms on Earth-like planets (ELPs) in the continuously habitable zone of other stars. On Earth, starlight PAR is inadequate for photosynthetically supported growth. An increase in starlight even to reach the minimum theoretical levels to allow for photosynthesis would require a universe that was approximately ten million times older, or with a ten million times greater density of stars, than is the case for the present universe. Photosynthesis on an ELP using PAR reflected from a natural satellite with the same size as our Moon, but at the Roche limit, could support a low rate of photosynthesis at full Moon. Photosynthesis on an ELP-like satellite of a Jupiter-sized planet using light reflected from the planet could be almost 1% of the rate in full sunlight on Earth when the planet was full. These potential contributions to photosynthesis require that the contribution is compared with the rate of photosynthesis driven by direct radiation from the star. Light pollution on Earth only energizes photosynthesis by organisms that are very close to the light source. However, effects of light pollution on photosynthesis can be more widespread if the photosynthetic canopy is retained for more of the year, caused by effects on photoperiodism, with implications for the influence of civilizations on photosynthesis.


Assuntos
Meio Ambiente Extraterreno , Fotossíntese/efeitos da radiação , Fenômenos Astronômicos , Astronomia , Planeta Terra , Exobiologia , Luz , Modelos Biológicos , Modelos Teóricos , Lua , Planetas
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(8-9): 2029-33, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15248982

RESUMO

The role of Antarctic epilithic lichens in the primary colonization of rocks and in the formation of soils is receiving attention because of the production of the stress-protective biochemicals needed to combat radiation, desiccation and extremes of temperature. Raman microscopy has been used here to study the encrustations produced at the interface between the rock substratum and Buellia spp. lichen thalli; in addition to whewellite, calcium oxalate monohydrate, the presence of weddellite, the metastable dihydrate form, was confirmed in the encrustations. An unusual pigmentation of the rock surface found on detachment of the lichen growths is identified as beta-carotene from its characteristic Raman bands at 1525, 1191, 1157 and 1003 cm(-1); normally, beta-carotene, which has been identified as a UV-radiation protectant, is found at the exposed upper surface of the biological organism. The interface between the detached lichen thalli and the rock also contains whewellite as the sole biomineralization product--which suggests a possible strategy for the formulation of weddelite in the growing Buellia spp. colony as an anti-desiccant.


Assuntos
Líquens/química , Regiões Antárticas , Meio Ambiente , Análise de Fourier , Líquens/efeitos da radiação , Microscopia/métodos , Protetores contra Radiação/análise , Análise Espectral Raman , Raios Ultravioleta/efeitos adversos , beta Caroteno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...