Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(13): 9344-9351, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38907714

RESUMO

Heptagon-containing distorted nanographenes are used as stoppers for the capping of a [2]rotaxane through a Michael-type addition reaction to vinyl sulfone groups. These curved aromatics are bulky enough to prevent the disassembly of the rotaxane but also give emissive and nonlinear (two-photon absorption and emission) optical properties to the structure.

2.
J Org Chem ; 89(1): 163-173, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38087461

RESUMO

We report the synthesis of a new set of amphiphilic saddle-shaped heptagon-containing polycyclic aromatic hydrocarbons (PAHs) functionalized with tetraethylene glycol chains and their self-assembly into large two-dimensional (2D) polymers. An in-depth analysis of the self-assembly mechanism at the air/water interface has been carried out, and the proposed arrangement models are in good agreement with the molecular dynamics simulations. Quite remarkably, the number and disposition of the tetraethylene glycol chains significantly influence the disposition of the PAHs at the interface and conditionate their packing under pressure. For the three compounds studied, we observed three different behaviors in which the aromatic core is parallel, perpendicular, and tilted with respect to the water surface. We also show that these curved PAHs are able to self-assemble in solution into remarkably large sheets of up to 150 µm2. These results show the relationship, within a family of curved nanographenes, between the monomer configuration and their self-assembly capacity in air/water interfaces and organic-water mixtures.

3.
Angew Chem Int Ed Engl ; 62(21): e202301356, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944060

RESUMO

We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70 , with remarkably large binding constants (ca. 107  M-1 ), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These results demonstrate saddle-shaped PAHs with dibenzocycloheptatrienone motifs as structural components for new macrocycles displaying molecular receptor abilities and versatile photochemical responses with promising electron-donor properties in host-guest complexes.

4.
Chem Sci ; 13(44): 13046-13059, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425494

RESUMO

The search for new ligands capable of modifying the metal nanoparticle (MNP) catalytic behavior is of increasing interest. Herein we present the first example of RuNPs stabilized with non-planar heptagon-containing saddle-shaped nanographenes (Ru@1 and Ru@2). The resemblance to graphene-supported MNPs makes these non-planar nanographene-stabilized RuNPs very attractive systems to further investigate graphene-metal interactions. A combined theoretical/experimental study allowed us to explore the coordination modes and dynamics of these nanographenes at the Ru surface. The curvature of these saddle-shaped nanographenes makes them efficient MNP stabilizers. The resulting RuNPs were found to be highly active catalysts for the hydrogenation of aromatics, including platform molecules derived from biomass (i.e. HMF) or liquid organic hydrogen carriers (i.e. N-indole). A significant ligand effect was observed since a minor modification on the hept-HBC structure (C[double bond, length as m-dash]CH2 instead of C[double bond, length as m-dash]O) was reflected in a substantial increase in the MNP activity. Finally, the stability of these canopied RuNPs was investigated by multiple addition experiments, proving to be stable catalysts for at least 96 h.

5.
Angew Chem Int Ed Engl ; 61(40): e202208679, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35904930

RESUMO

Here, we report an approach to the synthesis of highly charged enantiopure cyclophanes by the insertion of axially chiral enantiomeric binaphthyl fluorophores into the constitutions of pyridinium-based macrocycles. Remarkably, these fluorescent tetracationic cyclophanes exhibit a significant AIE compared to their neutral optically active binaphthyl precursors. A combination of theoretical calculations and time-resolved spectroscopy reveal that the AIE originates from limited torsional vibrations associated with the axes of chirality present in the chiral enantiomeric binaphthyl units and the fine-tuning of their electronic landscape when incorporated within the cyclophane structure. Furthermore, these highly charged enantiopure cyclophanes display CPL responses both in solution and in the aggregated state. This unique duality of AIE and CPL in these tetracationic cyclophanes is destined to be of major importance in future development of photonic devices and bio-applications.


Assuntos
Luminescência , Medições Luminescentes , Corantes Fluorescentes/química , Medições Luminescentes/métodos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...