Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38452969

RESUMO

Particle passage from the reticulorumen (RR) depends on particle density and size. A classic way of assessing these effects is the use of plastic markers of varying density and size that are recovered in the faeces. Here, we report results of an experiment where four fistulated reindeer (Rangifer tarandus, 96 ± 12 kg) were fed two different diets (browse, voluntary dry matter intake [DMI] 70 ± 10 g/kg0.75/d; or a pelleted diet, DMI 124 ± 52 g/kg0.75/d) and dosed via fistula with 8 different particle types combining densities of 1.03, 1.22 and 1.44 g/ml and sizes of 1, 10 and 20 mm. Generally, particles that passed the digestive tract intact (not ruminated) did so relatively early after marker dosing, and therefore had shorter mean retention times (MRT) than ruminated particles. On the higher intake, the overall mean retention time (MRT) of particles was shorter, but this was not an effect of shorter MRT for either intact or ruminated particles, but due to a higher proportion of intact particles at the higher intake. This supports the concept that ruminants do not adjust chewing behaviour depending on intake, but that a lower proportion of digesta is submitted to rumination due to pressure-driven escape from the forestomach at higher gut fills. Compared to cattle (Bos primigenius taurus), muskoxen (Ovibos moschatus) and moose (Alces alces) that had received the same markers, reindeer had a lower proportion of 1 mm particles that passed intact. Our results support the concept that the critical size threshold for particles leaving the ruminant forestomach is dependent on body size. While the results likely do not represent findings peculiar for reindeer, they indicate fundamental mechanisms operating in the forestomach of ruminants.


Assuntos
Cervos , Rena , Bovinos , Animais , Rúmen/fisiologia , Ruminantes/fisiologia , Fezes , Dieta/veterinária , Tamanho da Partícula , Digestão , Ração Animal/análise
2.
J R Soc Interface ; 20(202): 20230012, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37254702

RESUMO

The drivers of dental wear and compensatory hypselodont tooth growth are of current research interest. Expanding previous macroscopic dental wear measurements based on microtomographic scans of guinea pigs (Cavia porcellus) fed natural diets, we added diet groups with different predicted drivers of dental wear and analysed how measured variables relate to each other. The teeth of guinea pigs fed either pelleted diets containing external abrasives of various shapes, sizes and percentages (n = 66) or natural whole-leaf diets (n = 36, low-phytolith lucerne or grass or high-phytolith bamboo) were evaluated. The bamboo-fed animals showed the lowest tooth height with deep dentine basins, similar to the pellet-fed animals. Deeper dentine basins generally correlated with higher occlusal surfaces, allowing the hypothesis that changes in the pressure signal due to lower basins could initiate compensatory growth and broadening of the whole tooth surface in hypselodont teeth. Macroscopic dental wear did not categorically differ between whole-leaf or pelleted diets or between diets with internal phytoliths or with external silicate abrasives. Supporting interpretations that tooth wear should be viewed as a response to the biomechanical properties of ingested feed which may or may not be aptly summarized by broad descriptors such as 'whole/pelleted' or 'natural/artificial'.


Assuntos
Desgaste dos Dentes , Dente , Animais , Cobaias , Ração Animal/análise , Dieta , Cabeça
3.
J Equine Vet Sci ; 124: 104265, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893821

RESUMO

Like other members of the odd-toed ungulates (the perissodactyls), equids once had a higher species diversity in the fossil record than they have today. This is generally explained in comparison to the enormous diversity of bovid ruminants. Theories on putative competitive disadvantages of equids include the use of a single toe as opposed to two toes per leg, the lack of a specific brain cooling (and hence water-saving) mechanism, longer gestation periods that delay reproductive output, and in particular digestive physiology. To date, there is no empirical support for the theory that equids fare better on low-quality forage than ruminants. In contrast to the traditional juxtaposition of hindgut and foregut fermenters, we suggest that it is more insightful to sketch the evolution of equid and ruminant digestive physiology as a case of convergence: both evolved a particularly high chewing efficacy in their respective groups, which facilitates comparatively high feed and hence energy intakes. But because the ruminant system, less based on tooth anatomy but more on a forestomach sorting mechanism, is more effective, equids depend more on high feed intakes than ruminants and may well be more susceptible to feed shortages. Arguably, the most underemphasized characteristic of equids may be that in contrast to many other herbivores including ruminants and coprophageous hindgut fermenters, equids do not use the microbial biomass growing in their gastrointestinal tract. Equids display behavioral and morphophysiological adaptations to high feed intakes, and their cranial anatomy that facilitates the cropping of forage while performing grinding chewing at the same time might be unique. Rather than looking for explanations how equids are better adapted to their present niches than other organisms, considering them remnants of a different morphophysiological solution may be more appropriate.


Assuntos
Fenômenos Fisiológicos do Sistema Digestório , Ruminantes , Animais , Bovinos , Ruminantes/anatomia & histologia , Ruminantes/fisiologia , Fenômenos Fisiológicos da Nutrição
4.
Proc Natl Acad Sci U S A ; 119(49): e2212447119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459638

RESUMO

Dental wear due to ingestion of dust and grit has deleterious consequences. Herbivores that could not wash their food hence had to evolve particularly durable teeth, in parallel to the evolution of dental chewing surface complexity to increase chewing efficacy. The rumen sorting mechanism increases chewing efficacy beyond that reached by any other mammal and has been hypothesized to also offer an internal washing mechanism, which would be an outstanding example of an additional advantage by a physiological adaptation, but in vivo evidence is lacking so far. Here, we investigated four cannulated, live cows that received a diet to which sand was added. Silica in swallowed food and feces reflected experimental dietary sand contamination, whereas the regurgitate submitted to rumination remained close to the silica levels of the basal food. This helps explain how ruminants are able to tolerate high levels of dust or grit in their diet, with less high-crowned teeth than nonruminants in the same habitat. Palaeo-reconstructions based on dental morphology and dental wear traces need to take the ruminants' wear-protection mechanism into account. The inadvertent advantage likely contributed to the ruminants' current success in terms of species diversity.


Assuntos
Areia , Desgaste dos Dentes , Feminino , Bovinos , Animais , Ruminantes , Poeira , Dióxido de Silício , Desgaste dos Dentes/veterinária
5.
MethodsX ; 9: 101904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385921

RESUMO

Arising from the practical need to determine the surface area of the buckspoor spider webs of Seothyra schreineri, an approach for area determination was developed based on image processing. The method rendered results that were considered valid and reliable. Aside from the present application to determine the surface area of a spider web, this approach could potentially be used to accurately determine the area of any two-dimensional shape. For each web's photograph:•The boundary of the web was outlined.•Seeded region growing was used to segment the image into a web region and a background region.•The area of the web was determined as a pixel count, and then converted to mm2.

6.
Proc Biol Sci ; 289(1976): 20220675, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642364

RESUMO

A link between diet and avian intestinal anatomy is generally assumed. We collated the length of intestinal sections and body mass of 390 bird species and tested relationships with diet, climate and locomotion. There was a strong phylogenetic signal in all datasets. The total and small intestine scaled more-than-geometrically (95%CI of the scaling exponent > 0.33). The traditional dietary classification (faunivore, omnivore and herbivore) had no significant effect on total intestine (TI) length. Significant dietary proxies included %folivory, %frugi-nectarivory and categories (frugi-nectarivory, granivory, folivory, omnivory, insectivory and vertivory). Individual intestinal sections were affected by different dietary proxies. The best model indicates that higher consumption of fruit and nectar, drier habitats, and a high degree of flightedness are linked to shorter TI length. Notably, the length of the avian intestine depends on other biological factors as much as on diet. Given the weak dietary signal in our datasets, the diet intestinal length relationships lend themselves to narratives of flexibility (morphology is not destiny) rather than of distinct adaptations that facilitate using one character (intestine length) as proxy for another (diet). Birds have TIs of about 85% that of similar-sized mammals, corroborating systematic differences in intestinal macroanatomy between vertebrate clades.


Assuntos
Aves , Intestinos , Animais , Aves/anatomia & histologia , Dieta/veterinária , Ecossistema , Mamíferos , Filogenia , Especificidade da Espécie
7.
J Anim Physiol Anim Nutr (Berl) ; 106(3): 630-641, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33982342

RESUMO

Among the different factors thought to affect dental wear, dietary consistency is possibly the least investigated. To understand tooth wear of herbivorous animals consuming different dietary consistencies with different abrasive potential, we fed 14 rabbits (Oryctolagus cuniculus) exclusively with a timothy grassmeal-based diet in either pelleted or extruded form, or the same diets with an addition of 5% fine sand abrasives (mean size 130 µm). First, we offered the rabbits the pelleted and extruded diets as well as the pelleted control and pelleted abrasive diet in a two-stage preference experiment. Then, the rabbits received each diet for 2 weeks in a randomised serial feeding experiment, where each animal served as its own control. Tooth measurements for wear, growth and height were achieved using a manual calliper, endoscopic examination and CT scans. The analysis of the diets as fed showed almost identical mean particle size, but the extruded diet had a lower density (volume/mass) and softer consistency compared to the pelleted one and was favoured by most rabbits. The rabbits selected against the diet with sand during the preference experiment, possibly because it caused more tooth wear, especially on the teeth most exposed to wear along the upper tooth row (upper P4 and M1). The maxillary teeth also showed evidence of an increased chewing laterality by the end of the experiment. The extruded diet led to a significantly lower cheek teeth height than the pelleted diet, potentially due to the higher chewing effort needed for a similar dry matter intake. The results suggest that dietary hardness alone is a poor predictor of dental wear. The regrowth of the teeth matched wear consistently.


Assuntos
Desgaste dos Dentes , Dente , Ração Animal/análise , Animais , Dieta/veterinária , Coelhos , Areia , Desgaste dos Dentes/etiologia , Desgaste dos Dentes/veterinária
8.
J Morphol ; 283(1): 5-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689355

RESUMO

We determined location and amount of accumulated sand in the gastrointestinal tract (GIT) of rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) fed diets containing external (silicate) abrasives. Computed tomographic abdominal images of rabbits (n = 44) and guinea pigs (n = 16) that each received varying numbers (4-7) of different diets for 14 days each (total n = 311 computed tomographs), and radiographs of dissected GIT and presence of silica in GIT content (n = 46 animals) were evaluated. In rabbits, the majority of accumulated sand was located in the caecal appendix, an elongated, intestinal structure in the left side of the abdomen. The 'wash-back' colonic separation mechanism in rabbits may be partly responsible for a retrograde transport of sand back to the caecum, where dense, small particles accumulate in the appendix. The appendix likely acted as a reservoir of these particles, leading to significant effects not only of the momentary but also of the previous diet on recorded sand volumes in the rabbits. Guinea pigs have no caecal appendix and a colonic separation mechanism not based on a 'wash-back'. Less sand accumulation was found in their GIT without a specific location pattern, and there were less previous diet effects in this species. None of the rabbits or guinea pigs developed clinical signs of obstruction during the study, and the recorded sand volumes represented 1.0 ± 1.2% of the 14-d sand intake in rabbits and 0.2 ± 0.2% in guinea pigs. Accumulation of sand in volumes up to 10 cm3 in the GIT of rabbits does not seem to cause clinical health impairment. Large inter-individual differences in rabbits indicate inter-individual variation in proneness to sand accumulation. The reason for the presence of a sand-trapping caecal appendix in animals that are, due to their burrowing lifestyle and feeding close to the ground, predestined for accidental sand ingestion, remains to be unveiled.


Assuntos
Ração Animal , Apêndice , Ração Animal/análise , Animais , Trato Gastrointestinal , Cobaias , Coelhos , Areia
9.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1208-1215, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34791696

RESUMO

In investigations of differences between ruminant species feeding on browse or grass, it is often unclear whether observed differences are animal- or forage-specific. Ruminant species have been classified as 'moose-type', with little rumen content stratification, or 'cattle-type' with a distinct rumen contents stratification, including a gas layer. To which extent putative differences in forestomach motility are involved in these patterns is unknown. Using sonography, we investigated the frequency of reticular contractions and the stratification of rumen contents in goats fed exclusively on grass hay (n = 6) or dried browse (n = 5) directly after feeding, and after another 6 and 12 h with no access to feed. The frequency of reticular contractions decreased from immediately after feeding (1.8 ± 0.3 min-1 ) to 6 h afterwards (1.2 ± 0.2 min-1 ) and then remained constant, with no difference between diets. A gas dome became more visible over time, but neither its incidence nor its extent differed between diets. The results are in accord with classifying goats as 'cattle-type' in terms of their digestive physiology, and they add to a growing body of evidence that differences in digestive physiology between ruminant species are more due to species characteristics than different kinds of ingested forages.


Assuntos
Cervos , Cabras , Bovinos , Animais , Cabras/fisiologia , Rúmen/fisiologia , Ração Animal/análise , Dieta/veterinária , Ruminantes/fisiologia , Cervos/fisiologia
10.
J Exp Zool B Mol Dev Evol ; 338(8): 586-597, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34813148

RESUMO

External quartz abrasives are one of the driving forces of macrowear in herbivorous animals. We tested to what extent different sizes and concentrations influence their effect on tooth wear. We fed seven pelleted diets varying only in quartz concentration (0%, 4%, and 8%) and size (fine silt: ∼4 µm, coarse silt: ∼50 µm, fine sand: ∼130 µm) to rabbits (Oryctolagus cuniculus, n = 16) for 2 weeks each in a randomized serial experiment. Measurements to quantify wear and growth of incisors and the mandibular first cheek tooth, as well as heights of all other cheek teeth, were performed using calipers, endoscopic examination, and computed tomography scans before and after each feeding period. Tooth growth showed a compensatory correlation with wear. Absolute tooth height (ATH) and relative tooth height (RTH); relative to the 0% quartz "control" diet) was generally lower on the higher concentration and the larger size of abrasives. The effect was more pronounced on the maxillary teeth, on specific tooth positions and the right jaw side. When offered the choice between different sizes of abrasives, the rabbits favored the silt diets over the control and the fine sand diet; in a second choice experiment with different diets, they selected a pelleted diet with coarse-grained sand, however. This study confirms the dose- and size-dependent wear effects of external abrasives, and that hypselodont teeth show compensatory growth. The avoidance of wear did not seem a priority for animals with hypselodont teeth, since the rabbits did not avoid diets inducing a certain degree of wear.


Assuntos
Desgaste dos Dentes , Dente , Coelhos , Animais , Quartzo , Areia , Dieta
11.
Mamm Biol ; 101(6): 941-948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924918

RESUMO

Dust and grit are ingested by herbivores in their natural habitats along with the plants that represent their selected diet. Among the functions of the rumen, a washing of ingesta from adhering dust and grit has recently been demonstrated. The putative consequence is a less strenuous wear on ruminant teeth by external abrasives during rumination. The same function should theoretically apply to camelids, but has not been investigated so far. We fed six llamas (Lama glama) a diet of grass hay and a lucerne-based pelleted food in which fine sand had been included at about 8% of ingredients, for ad libitum consumption for 6 weeks. Subsequently, animals were slaughtered and content of the different sections of the gastrointestinal tract was sampled for the analysis of dry matter (DM), total ash, and acid detergent insoluble ash (ADIA, a measure for silica). Additionally, two of the animals were subjected to whole-body computer tomography (CT) after death in the natural sternal resting position. No clinical problems or macroscopic changes in the faeces were observed during the experimental period. The results indicate an accumulation of ADIA in the C3 compartment of the stomach complex, in particular in the posterior portion that is the equivalent of the abomasum in ruminants. By contrast, contents of the C1, from which material is recruited for regurgitation and rumination, were depleted of ADIA, indicating that the contents had largely been washed free of sand. The washing effect is an unavoidable side effect of the flotation- and sedimentation-based sorting mechanisms in the ruminant and the camelid forestomachs. In theory, this should allow ruminants and camelids to live in similar habitats as nonruminant herbivores at lower degrees of hypsodonty.

12.
PLoS One ; 16(7): e0253182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214090

RESUMO

Although relationships between intestinal morphology between trophic groups in reptiles are widely assumed and represent a cornerstone of ecomorphological narratives, few comparative approaches actually tested this hypothesis on a larger scale. We collected data on lengths of intestinal sections of 205 reptile species for which either body mass (BM), snout-vent-length (SVL) or carapax length (CL) was recorded, transforming SVL or CL into BM if the latter was not given, and analyzed scaling patterns with BM and SVL, accounting for phylogeny, comparing three trophic guilds (faunivores, omnivores, herbivores), and comparing with a mammal dataset. Length-BM relationships in reptiles were stronger for the small than the large intestine, suggesting that for the latter, additional factors might be relevant. Adding trophic level did not consistently improve model fit; only when controlling for phylogeny, models indicated a longer large intestine in herbivores, due to a corresponding pattern in lizards. Trophic level effects were highly susceptible to sample sizes, and not considered strong. Models that linked BM to intestine length had better support than models using SVL, due to the deviating body shape of snakes. At comparable BM, reptiles had shorter intestines than mammals. While the latter finding corresponds to findings of lower tissue masses for the digestive tract and other organs in reptiles as well as our understanding of differences in energetic requirements between the classes, they raise the hitherto unanswered question what it is that reptiles of similar BM have more than mammals. A lesser effect of trophic level on intestine lengths in reptiles compared to mammals may stem from lesser selective pressures on differentiation between trophic guilds, related to the generally lower food intake and different movement patterns of reptiles, which may not similarly escalate evolutionary arms races tuned to optimal agility as between mammalian predators and prey.


Assuntos
Intestinos/anatomia & histologia , Mamíferos/anatomia & histologia , Répteis/anatomia & histologia , Anatomia Comparada , Animais , Tamanho Corporal , Carnivoridade , Ingestão de Energia , Herbivoria , Intestino Grosso/anatomia & histologia , Intestino Delgado/anatomia & histologia , Mamíferos/classificação , Tamanho do Órgão , Répteis/classificação
13.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34124765

RESUMO

Dental microwear texture analysis (DMTA) is widely used for diet inferences in extant and extinct vertebrates. Often, a reference tooth position is analysed in extant specimens, while isolated teeth are lumped together in fossil datasets. It is therefore important to test whether dental microwear texture (DMT) is tooth position specific and, if so, what causes the differences in wear. Here, we present results from controlled feeding experiments with 72 guinea pigs, which received either fresh or dried natural plant diets of different phytolith content (lucerne, grass, bamboo) or pelleted diets with and without mineral abrasives (frequently encountered by herbivorous mammals in natural habitats). We tested for gradients in dental microwear texture along the upper cheek tooth row. Regardless of abrasive content, guinea pigs on pelleted diets displayed an increase in surface roughness along the tooth row, indicating that posterior tooth positions experience more wear compared with anterior teeth. Guinea pigs feedings on plants of low phytolith content and low abrasiveness (fresh and dry lucerne, fresh grass) showed almost no DMT differences between tooth positions, while individuals feeding on more abrasive plants (dry grass, fresh and dry bamboo) showed a gradient of decreasing surface roughness along the tooth row. We suggest that plant feeding involves continuous intake and comminution by grinding, resulting in posterior tooth positions mainly processing food already partly comminuted and moistened. Pelleted diets require crushing, which exerts higher loads, especially on posterior tooth positions, where bite forces are highest. These differences in chewing behaviour result in opposing wear gradients for plant versus pelleted diets.


Assuntos
Desgaste dos Dentes , Dente , Ração Animal/análise , Animais , Dieta , Cobaias , Mastigação
14.
Proc Biol Sci ; 288(1944): 20202888, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33563126

RESUMO

An often-stated ecomorphological assumption that has the status of 'textbook knowledge' is that the dimensions of the digestive tract correlate with diet, where herbivores-consuming diets of lower digestibility-have longer intestinal tracts than faunivores-consuming diets of higher digestibility. However, statistical approaches have so far failed to demonstrate this link. Here, we collated data on the length of intestinal sections and body mass of 519 mammal species, and test for various relationships with trophic, climatic and other biological characteristics. All models showed a strong phylogenetic signal. Scaling relationships with body mass showed positive allometry at exponents greater than 0.33, except for the caecum, which is particularly large in smaller species. Body mass was more tightly linked to small intestine than to large intestine length. Adding a diet proxy to the relationships increased model fit for all intestinal sections, except for the small intestine when accounting for phylogeny. Thus, the diet has a main effect on the components of the large intestine, with longer measures in herbivores. Additionally, measures of habitat aridity had a positive relationship with large intestine length. The small intestine was longer in species from colder habitats at higher latitudes, possibly facilitating the processing of peak intake rates during the growing season. This study corroborates intuitive expectations on digestive tract anatomy, while the dependence of significant results on large sample sizes and inclusion of specific taxonomic groups indicates that the relationships cannot be considered fixed biological laws.


Assuntos
Intestinos , Mamíferos , Animais , Dieta , Digestão , Trato Gastrointestinal , Filogenia
15.
Anat Rec (Hoboken) ; 304(2): 425-436, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32314555

RESUMO

Diet affects many factors of an animal's anatomy, but teeth are a specific focus of dietary research, as their durability lends them to record information on a large variety of scales. Abrasive diets like those of grazing herbivores are known to wear down teeth, but how that wear affects tooth growth and the relations between its different morphological components is rarely investigated. Seven pelleted diets varying in abrasive size and concentration were fed over a 17-month period to 49 sheep (Ovis aries), of which n = 39 qualified for morphology measurements. Using computed tomography, scans of the skulls were made over the course of the experiment, and the impact of diet-related wear was observed on tooth volume and morphology, including the position of dental burr marks, over time. Digital caliper measurements were applied to 3D renderings of the teeth, and the volume of crown and root segments were investigated separately. We aimed to detect a signal of root growth compensating for wear, and test if this mechanism would be affected by dietary abrasives. Crown-segment volume loss was correlated to root-segment volume gain. Height and burr mark measurements indicated a much higher experimental tooth wear than that previously reported for free-ranging animals. The reason for this is unclear. There was no relationship between tooth height and dentine basin depth. For all parameters, there was no effect of diet; hence, while the measurements corroborate general understanding of tooth wear and compensatory processes, these methods appear not suitable to assess subtle differences between feeding regimes.


Assuntos
Dieta/veterinária , Desgaste dos Dentes/veterinária , Dente/diagnóstico por imagem , Ração Animal , Animais , Feminino , Masculino , Ovinos , Tomografia Computadorizada por Raios X , Dente/crescimento & desenvolvimento , Desgaste dos Dentes/diagnóstico por imagem
16.
PLoS One ; 15(6): e0234826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542033

RESUMO

Feeding practice in herbivorous mammals can impact their dental wear, due to excessive or irregular abrasion. Previous studies indicated that browsing species display more wear when kept in zoos compared to natural habitats. Comparable analyses in tapirs do not exist, as their dental anatomy and chewing kinematics are assumed to prevent the use of macroscopic wear proxies such as mesowear. We aimed at describing tapir chewing, dental anatomy and wear, to develop a system allowing comparison of free-ranging and captive specimens even in the absence of known age. Video analyses suggest that in contrast to other perissodactyls, tapirs have an orthal (and no lateral) chewing movement. Analysing cheek teeth from 74 museum specimens, we quantified dental anatomy, determined the sequence of dental wear along the tooth row, and established several morphometric measures of wear. In doing so, we showcase that tapir maxillary teeth distinctively change their morphology during wear, developing a height differential between less worn buccal and more worn lingual cusps, and that quantitative wear corresponds to the eruption sequence. We demonstrate that mesowear scoring shows a stable signal during initial wear stages but results in a rather high mesowear score compared to other browsing herbivores. Zoo specimens had lesser or equal mesowear scores as specimens from the wild; additionally, for the same level of third molar wear, premolars and other molars of zoo specimens showed similar or less wear compared specimens from the wild. While this might be due to the traditional use of non-roughage diet items in zoo tapirs, these results indicate that in contrast to the situation in other browsers, excessive tooth wear appears to be no relevant concern in ex situ tapir management.


Assuntos
Mastigação , Perissodáctilos/anatomia & histologia , Perissodáctilos/fisiologia , Dente/anatomia & histologia , Dente/fisiologia , Animais , Fenômenos Biomecânicos
17.
PeerJ ; 8: e8622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117638

RESUMO

Examination of the feeding habits of mammalian species such as the African elephant (Loxodonta africana) that range over large seasonally dynamic areas is exceptionally challenging using field-based methods alone. Although much is known of their feeding preferences from field studies, conclusions, especially in relation to differing habits in wet and dry seasons, are often contradictory. Here, two remote approaches, stable carbon isotope analysis and remote sensing, were combined to investigate dietary changes in relation to tree and grass abundances to better understand elephant dietary choice in the Kruger National Park, South Africa. A composited pair of Landsat Enhanced Thematic Mapper satellite images characterising flushed and senescent vegetation states, typical of wet and dry seasons respectively, were used to generate land-cover maps focusing on the forest to grassland gradient. Stable carbon isotope analysis of elephant faecal samples identified the proportion of C3 (typically browse)/C4 (typically grass) in elephant diets in the 1-2 days prior to faecal deposition. The proportion of surrounding C4 land-cover was extracted using concentric buffers centred on faecal sample locations, and related to the faecal %C4 content. Results indicate that elephants consume C4 vegetation in proportion to its availability in the surrounding area during the dry season, but during the rainy season there was less of a relationship between C4 intake and availability, as elephants targeted grasses in these periods. This study illustrates the utility of coupling isotope and cost-free remote sensing data to conduct complementary landscape analysis at highly-detailed, biologically meaningful resolutions, offering an improved ability to monitor animal behavioural patterns at broad geographical scales. This is increasingly important due to potential impacts of climate change and woody encroachment on broad-scale landscape habitat composition, allowing the tracking of shifts in species utilisation of these changing landscapes in a way impractical using field based methods alone.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32097716

RESUMO

The general observation that secondary consumers ingest highly digestible food and have simple short guts and small abdominal cavities intuitively results in the assumption that mammalian carnivores carry less digesta in their gut compared to herbivores. Due to logistic constraints, this assumption has not been tested quantitatively so far. In this contribution, we estimated the dry matter gut contents (DMC) for 25 species of the order Carnivora (including two strictly herbivorous ones, the giant and the red panda) using the physical 'Occupancy Principle', based on a literature data collection on dry matter intake (DMI), apparent dry matter digestibility (aD DM) and retention time (RT), and compared the results to an existing collection for herbivores. Scaling exponents with body mass (BM) for both carnivores and herbivores were in the same range with DMI ~ BM0.75; aD DM ~ BM0; RT ~ BM0.11 and DMC ~ BM0.88. The trophic level (carnivore vs herbivore) significantly affected all digestive physiology parameters except for RT. Numerically, the carnivore DMI level reached 77%, the RT 32% and DMC only 29% of the corresponding herbivore values, whereas the herbivore aD DM only reached 82% of that of carnivores. Thus, we quantitatively show that carnivores carry less inert mass or gut content compared to herbivores, which putatively benefits them in predator-prey interactions and might have contributed to the evolution towards unguligradism in herbivores. As expected, the two panda species appeared as outliers in the dataset with low aD DM and RT for a herbivore but extremely high DMI values, resulting in DMC in the lower part of the herbivore range. Whereas the difference in DMI and DMC scaling in herbivores might allow larger herbivores to compensate for lower diet quality by ingesting more, this difference may allow larger carnivores not to go for less digestible prey parts, but mainly to increase meal intervals, i.e. not having to hunt on a daily basis.


Assuntos
Peso Corporal , Carnívoros/fisiologia , Digestão , Comportamento Alimentar , Trato Gastrointestinal/fisiologia , Herbivoria/fisiologia , Comportamento Predatório , Animais , Dieta , Cadeia Alimentar , Especificidade da Espécie
19.
Proc Biol Sci ; 286(1912): 20191921, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31594498

RESUMO

The effect of phytoliths on tooth wear and function has been contested in studies of animal-plant interactions. For herbivores whose occlusal chewing surface consists of enamel ridges and dentine tissue, the phytoliths might particularly erode the softer dentine, exposing the enamel ridges to different occlusal forces and thus contributing to enamel wear. To test this hypothesis, we fed guinea pigs (Cavia porcellus; n = 36 in six groups) for three weeks exclusively on dry or fresh forage of low (lucerne), moderate (fresh timothy grass) or very high (bamboo leaves) silica content representing corresponding levels of phytoliths. We quantified the effect of these treatments with measurements from micro-computed tomography scans. Tooth height indicated extreme wear due to the bamboo diet that apparently brought maxillary incisors and molars close to the minimum required for functionality. There were negative relationships between a cheek tooth's height and the depth of its dentine basin, corroborating the hypothesis that dentine erosion plays an important role in herbivore tooth wear. In spite of lower body mass, bamboo-fed animals paradoxically had longer cheek tooth rows and larger occlusal surfaces. Because ever-growing teeth can only change in shape from the base upwards, this is a strong indication that failure to compensate for wear by dental height-growth additionally triggered general expansive growth of the tooth bases. The results suggest that enamel wear may intensify after enamel has been exposed due to a faster wear of the surrounding dentine tissue (and not the other way around), and illustrate a surprising plasticity in the reactivity of this rodent's system that adjusts tooth growth to wear.


Assuntos
Esmalte Dentário , Cobaias/fisiologia , Desgaste dos Dentes , Ração Animal , Animais , Dentina , Dieta , Herbivoria , Mastigação , Dente Molar
20.
J Hum Evol ; 133: 99-107, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31358186

RESUMO

The African savannas that many early hominins occupied likely experienced stark seasonality and contained mosaic habitats (i.e., combinations of woodlands, wetlands, grasslands, etc.). Most would agree that the bulk of dietary calories obtained by taxa such as Australopithecus and Paranthropus came from the consumption of vegetation growing across these landscapes. It is also likely that many early hominins were selective feeders that consumed particular plants/plant parts (e.g., leaves, fruit, storage organs) depending on the habitat and season within which they were foraging. Thus, improving our understanding of how the nutritional properties of potential hominin plant foods growing in modern African savanna ecosystems respond to season and vary by habitat will improve our ability to model early hominin dietary behavior. Here, we present nutritional analyses (crude protein and acid detergent fiber) of plants growing in eastern and southern African savanna habitats across both wet and dry seasons. We find that many assumptions about savanna vegetation are warranted. For instance, plants growing in our woodland habitats have higher average protein/fiber ratios than those growing in our wetland and grassland transects. However, we find that the effects of season and habitat are complex, an example being the unexpectedly higher protein levels we observe in the grasses and sedges growing in our Amboseli wetlands during the dry season. Also, we find significant differences between the vegetation growing in our eastern and southern African field sites, particularly among plants using the C4 photosynthetic pathway. This may have implications for the differences we see between the stable carbon isotope compositions and dental microwear patterns of eastern and southern African Paranthropus species, despite their shared, highly derived craniodental anatomy.


Assuntos
Florestas , Pradaria , Hominidae/fisiologia , Valor Nutritivo , Plantas/química , Áreas Alagadas , Animais , Quênia , Estações do Ano , Solo/química , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...