Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 12(48): 5801-5814, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33319873

RESUMO

This work presents the association of cloud point extraction (CPE) and electroanalysis for the selective and sensitive determination of methyl parathion (MP) in honey. The CPE step provided the pre-concentration of MP from a complex sample, in which the optimized extraction parameters (Triton X-100 concentration of 0.75% w/v, NaCl concentration of 1.0% w/v and heating time of 30 min) were investigated using a factorial design (23). The detection of MP was performed using a cathodically pre-treated boron-doped diamond (BDD) working electrode and square wave voltammetry (SWV), after a suitable dilution of the CPE extract in Britton-Robinson buffer pH 6.0 as the supporting electrolyte. MP presented three electrochemical processes over the BDD surface, but only the reduction peak at around -0.7 V was monitored for the MP determination (higher detectability). Improved reproducibility was reached by applying an in situ cleaning step (+2.0 V for 15 s) followed by a re-activation process (-2.0 V for 15 s) between measurements. Using the optimized variables, a linear range between 0.1 and 2.0 µmol L-1 was obtained for MP with a limit of detection of 0.006 µmol L-1, a 6-fold lower value when compared with the value attained without the CPE step. The experimental enrichment factor of MP was 6.1. Also, the optimized CPE allowed the determination of MP in honey samples with good accuracy (recovery between 94 and 106%), which was not possible using direct detection (without CPE) due to the matrix interference. This is the first paper that demonstrates the combination of CPE and electroanalysis for the determination of an organic compound.

2.
Water Sci Technol ; 65(8): 1435-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466590

RESUMO

Metal contaminants are generally removed from effluents by chemical and physical processes which are often associated with disadvantages such as the use of toxic reagents, generation of toxic waste and high costs. Hence, new techniques have been developed, among them the study of natural adsorbents, for instance, the use of Moringa oleifera seeds. The potential of M. oleifera seeds for nickel removal in aqueous systems was investigated. The seeds utilized were obtained from plants grown in Uberlândia/Brazil. After being dried and pulverized, the seeds were treated with 0.1 mol/L NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analyses were used for the characterization of the material. Using the optimized methodology (50 mL of 4.0 mg/L Ni(II), pH range of 4.0-6.0, agitation time of 5 min and adsorption mass of 2.0 g) more than 90% of Ni(II) could be removed from water samples. The sorption data were fitted satisfactorily by the Langmuir adsorption model. Evaluation applying the Langmuir equation gave the monolayer sorption capacity as 29.6 mg/g. The results indicate that this material could be employed in the extraction of nickel, considering its ease of use, low cost and environmental viability, which make it highly attractive for application in developing countries.


Assuntos
Moringa oleifera/química , Níquel/isolamento & purificação , Sementes/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Concentração de Íons de Hidrogênio , Termodinâmica
3.
Talanta ; 71(1): 353-8, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19071311

RESUMO

A method using bi-directional electrostacking (BDES) in a flow system is presented for As preconcentration and speciation analysis. Some parameters such as electrostacking time and applied voltage, support buffers and their concentrations were investigated. Boric acid plus sodium hydroxide at 0.1mol/l concentration was selected as support buffer to improve the pre-concentration factor (PF) for As(V). An analytical range from 2.0 to 50.0mugl(-1), and 0.35mugl(-1) as limit of detection, when applied 750V for 20min, were achieved. Under these conditions, a pre-concentration factor of 4.8 was obtained. The proposed method was applied to determine As(V) in mineral water and natural water samples (river, fountain and gold mine) from Ouro Preto city. Recoveries from 93.5 to 106.4% were achieved at 10mugl(-1) added As level (R.S.D.s between 3 and 7%). Potassium permanganate (10mgl(-1)) was used for oxidising As species in order to determine total As, being established the concentration of As(III) from the difference between total As and As(V).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...