Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 9(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207413

RESUMO

The SARS-CoV-2 pandemic in Brazil has grown rapidly since the first case was reported on 26 February 2020. As the pandemic has spread, the low availability of medical equipment has increased, especially mechanical ventilators. The Brazilian Unified Health System (SUS) claimed to have only 40,508 mechanical ventilators, which would be insufficient to support the Brazilian population at the pandemic peak. This lack of ventilators, especially in public hospitals, required quick, assertive, and effective actions to minimize the health crisis. This work provides an overview of the rapid deployment of a network for maintaining disused mechanical ventilators in public and private healthcare units in some regions of Brazil during the SARS-CoV-2 pandemic. Data referring to the processes of maintaining equipment, acquiring parts, and conducting national and international training were collected and analyzed. In total, 4047 ventilators were received by the maintenance sites, and 2516 ventilators were successfully repaired and returned to the healthcare units, which represents a success rate of 62.17%. The results show that the maintenance initiative directly impacted the availability and reliability of the equipment, allowing access to ventilators in the public and private health system and increasing the capacity of beds during the pandemic.

2.
Sci Rep ; 9(1): 15898, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685926

RESUMO

Due to their applicability for manufacturing dense, hard and stable coatings, Physical Vapor Deposition (PVD) techniques, such as High Power Impulse Magnetron Sputtering (HiPIMS), are currently used to deposit transition metal nitrides for tribological applications. Cr-Al-N is one of the most promising ceramic coating systems owing to its remarkable mechanical and tribological properties along with excellent corrosion resistance and high-temperature stability. This work explores the possibility of further improving Cr-Al-N coatings by modulation of its microstructure. Multilayer-like Cr1-xAlxN single films were manufactured using the angular oscillation of the substrate surface during HiPIMS. The sputtering process was accomplished using pulse frequencies ranging from 200 to 500 Hz and the resulting films were evaluated with respect to their hardness, Young's modulus, residual stresses, deposition rate, crystallite size, crystallographic texture, coating morphology, chemical composition, and surface roughness. The multilayer-like structure, with periodicities ranging from 250 to 550 nm, were found associated with misorientation gradients and small-angle grain boundaries along the columnar grains, rather than mesoscopic chemical modulation of the microstructure. This minute modification of microstructure along with associated compressive residual stresses are concluded to explain the increased hardness ranging from 25 to 30 GPa, which is at least 20% over that expected for a film of the same chemical composition grown by a conventional PVD processing route.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...