Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 81(2): 95-100, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16956711

RESUMO

Laboratory radioassays were made to study mercury (Hg) methylation together with bacterial production in the periphyton of two aquatic macrophytes, the submerged Myriophyllum spicatum, from a constructed wetland in Sweden and the floating Eichhornia crassipes, from a eutrophied tropical lake in Brazil. Time course incubations were made by addition of (203)HgCl(2) and the methylmercury formed was extracted at pre-defined time intervals. Bacterial production ((14)C-leucine incorporation) was measured at the same time intervals, with plants removed from parallel incubations made with and without addition of cold HgCl(2). For E. crassipes, higher methylmercury production was observed at elevated bacterial production, whereas for M. spicatum, the bacterial production was significantly lower, and Hg methylation was below the detection limit. The combined results confirm the importance of microbial processes for Hg methylation, although other factors are known to influence this process in complex ways. The addition of Hg did not significantly influence bacterial production, while the incubation temperatures used (25 and 35 degrees C) resulted in different methylation rates. Radiotracer techniques for measurements of bacterial production such as (14)C-leucine uptake can provide useful insights into the Hg cycle in aquatic environments, and our data suggest that they may be used as a proxy of mercury methylation potentials.


Assuntos
Bactérias/metabolismo , Técnicas de Química Analítica/métodos , Clima , Eichhornia/microbiologia , Monitoramento Ambiental/métodos , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/metabolismo , Áreas Alagadas , Radioisótopos de Carbono , Agências Internacionais , Metilação , Compostos de Metilmercúrio/química
2.
Anal Bioanal Chem ; 374(6): 983-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12458407

RESUMO

Comparative tests of net mercury methylation potentials, with cultivated and macrophyte-associated periphyton and using stable ((200)HgCl(2) and CH(3)(199)HgCl) and labeled ((203)HgCl(2)) mercury, have been conducted in the Everglades nutrient removal area (Florida, USA) and in a tropical coastal Brazilian lake (RJ, Brazil). More methylmercury was formed by macrophyte-associated (up to 17% of added (203)Hg(II)) than cultivated (up to 1.6%) periphyton and methylmercury formation was lower in periphyton exposed to light (0.2%). High methylation was also observed for samples incubated with stable mercury isotopes (1.5-7.7% of added (200)Hg(II)), confirming the results obtained with labeled mercury. Simultaneous addition of (200)HgCl(2) and CH(3)(199)HgCl indicated that CH(3)(199)HgCl had no inhibitory effect on Hg methylation. The elevated methylation potentials observed in macrophytes, because of their root-associated periphyton, might contribute significantly to the high levels of methylmercury observed in Everglades biota. Comparative mercury methylation tests were also conducted in the water of a stratified temperate lake (Wisconsin, USA). Similar trends were observed for both stable and radioisotopes, with increasing mercury methylation along the depth profile. The highest levels (0.9% (203)Hg(II) and 0.8% (200)Hg(II)) were obtained below the oxic/anoxic boundary, where sulfide starts to increase, probably as a result of the intense activity of sulfate-reducing bacteria in the anoxic layer.

3.
Int J Biochem Cell Biol ; 34(12): 1586-93, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12379280

RESUMO

In addition to the (Na(+)+K(+))ATPase another P-ATPase, the ouabain-insensitive Na(+)-ATPase has been observed in several tissues. In the present paper, the effects of ligands, such as Mg(2+), MgATP and furosemide on the Na(+)-ATPase and its modulation by pH were studied in the proximal renal tubule of pig. The principal kinetics parameters of the Na(+)-ATPase at pH 7.0 are: (a) K(0.5) for Na(+)=8.9+/-2.2mM; (b) K(0.5) for MgATP=1.8+/-0.4mM; (c) two sites for free Mg(2+): one stimulatory (K(0.5)=0.20+/-0.06 mM) and other inhibitory (I(0.5)=1.1+/-0.4 mM); and (d) I(0.5) for furosemide=1.1+/-0.2 mM. Acidification of the reaction medium to pH 6.2 decreases the apparent affinity for Na(+) (K(0.5)=19.5+/-0.4) and MgATP (K(0.5)=3.4+/-0.3 mM) but increases the apparent affinity for furosemide (0.18+/-0.02 mM) and Mg(2+) (0.05+/-0.02 mM). Alkalization of the reaction medium to pH 7.8 decreases the apparent affinity for Na(+) (K(0.5)=18.7+/-1.5 mM) and furosemide (I(0.5)=3.04+/-0.57 mM) but does not change the apparent affinity to MgATP and Mg(2+). The data presented in this paper indicate that the modulation of the Na(+)-ATPase by pH is the result of different modifications in several steps of its catalytical cycle. Furthermore, they suggest that changes in the concentration of natural ligands such as Mg(2+) and MgATP complex may play an important role in the Na(+)-ATPase physiological regulatory mechanisms.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/farmacologia , Proteínas de Transporte de Cátions/antagonistas & inibidores , Proteínas de Transporte de Cátions/metabolismo , Furosemida/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Magnésio/farmacologia , Animais , Concentração de Íons de Hidrogênio , Cinética , Ouabaína/farmacologia , Sódio/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...