Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591684

RESUMO

This work outlines conditions suitable for the heteroepitaxial growth of Cr2O3(0001) films (1.5-20 nm thick) on a Ru(0001)-terminated substrate. Optimized growth is achieved by sputter deposition of Cr within a 4 mTorr Ar/O2 20% ambient at Ru temperatures ranging from 450 to 600 °C. The Cr2O3 film adopts a 30° rotated honeycomb configuration with respect to the underlying Ru(0001) substrate and exhibits a hexagonal lattice parameter consistent with that for bulk Cr2O3(0001). Heating to 700 °C within the same environment during film preparation leads to Ru oxidation. Exposure to temperatures at or above 400 °C in a vacuum, Ar, or Ar/H2 3% leads to chromia film degradation characterized by increased Ru 3d XPS intensity coupled with concomitant Cr 2p and O 1s peak attenuations when compared to data collected from unannealed films. An ill-defined but hexagonally well-ordered RuxCryOz surface structure is noted after heating the film in this manner. Heating within a wet Ar/H2 3% environment preserves the Cr2O3(0001)/Ru(0001) heterolayer structure to temperatures of at least 950 °C. Heating an Ru-Cr2O3-Ru heterostacked film to 950 °C within this environment is shown by cross-sectional scanning/transmission electron microscopy (S/TEM) to provide clear evidence of retained epitaxial bicrystalline oxide interlayer structure, interlayer immiscibility, and epitaxial registry between the top and bottom Ru layers. Subtle effects marked by O enrichment and O 1s and Cr 2p shifts to increased binding energies are noted by XPS in the near-Ru regions of Cr2O3(0001)/Ru(0001) and Ru(0001)/Cr2O3(0001)/Ru(0001) films after annealing to different temperatures in different sets of environmental conditions.

3.
Addict Biol ; 28(12): e13344, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38017643

RESUMO

Opioid use disorder has become an epidemic in the United States, fuelled by the widespread availability of fentanyl, which produces rapid and intense euphoria followed by severe withdrawal and emotional distress. We developed a new preclinical model of fentanyl seeking in outbred male and female rats using volitional oral self-administration (SA) that can be readily applied in labs without intravascular access. Using a traditional two-lever operant procedure, rats learned to take oral fentanyl vigorously, escalated intake across sessions, and readily reinstated responding to conditioned cues after extinction. Oral SA also revealed individual and sex differences that are essential to studying substance use risk propensity. During a behavioural economics task, rats displayed inelastic demand curves and maintained stable intake across a wide range of fentanyl concentrations. Oral SA was also neatly patterned, with distinct 'loading' and 'maintenance' phases of responding within each session. Using our software DeepSqueak, we analysed ultrasonic vocalizations (USVs), which are innate expressions of current emotional state in rats. Rats produced 50 kHz USVs during loading then shifted quickly to 22 kHz calls despite ongoing maintenance of oral fentanyl taking, reflecting a transition to negative reinforcement. Using fibre photometry, we found that the lateral habenula differentially processed drug cues and drug consumption depending on affective state, with potentiated modulation by drug cues and consumption during the negative affective maintenance phase. Together, these results indicate a rapid progression from positive to negative reinforcement occurs even within an active drug taking session, revealing a within-session opponent process.


Assuntos
Fentanila , Vocalização Animal , Ratos , Feminino , Masculino , Animais , Ultrassom , Autoadministração/psicologia , Emoções
4.
Addict Neurosci ; 82023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37664219

RESUMO

The striatum, both dorsal and ventral, is strongly implicated in substance use disorder. Chronic consumption of abused substances, such as cocaine, can cause an oversaturation of mesostriatal dopamine, which results in alterations in the firing of striatal neurons. While most preclinical studies of drug self-administration (S-A) are focused on these alterations, individual differences in a subject's early responses to drugs can also account for substantial differences in addiction susceptibility. In this study, we modeled longitudinal pharmacokinetics using data from a previous longitudinal study (Coffey et al., 2015) and aimed to determine if firing in specific dorsal and ventral striatal subregions was subject to changes across chronic cocaine S-A, and if individual animal differences in striatal firing in response to early drug exposure correlated with increases in drug intake. We observed that the firing patterns of nucleus accumbens (NAc) core and shell neurons exhibited increasing sensitivity to cocaine over the first 6 S-A sessions and maintained a strong negative correlation between drug intake and neuronal firing rates across chronic S-A. Moreover, we observed that the early sensitivity of NAc shell neurons to cocaine correlated with future increases in drug intake. Specifically, rats whose NAc shell neurons were most inhibited by increasing levels of cocaine upon first exposure exhibited the strongest increases in cocaine intake over time. If this difference can be linked to a genetic difference, or druggable targets, it may be possible to screen for similar addiction susceptibility in humans or develop novel preemptive pharmacotherapies.

5.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37163074

RESUMO

Opioid use disorder has become an epidemic in the United States, fueled by the widespread availability of fentanyl, which produces rapid and intense euphoria followed by severe withdrawal and emotional distress. We developed a new preclinical model of fentanyl seeking in outbred male and female rats using volitional oral self-administration that can be readily applied in labs without intravascular access. Using a traditional two lever operant procedure, rats learned to take oral fentanyl vigorously, escalated intake across sessions, and readily reinstated responding to conditioned cues after extinction. Oral self-administration also revealed individual and sex differences that are essential to studying substance use risk propensity. During a behavioral economics task, rats displayed inelastic demand curves and maintained stable intake across a wide range of fentanyl concentrations. Oral SA was also neatly patterned, with distinct "loading" and "maintenance" phases of responding within each session. Using our software DeepSqueak, we analyzed thousands of ultrasonic vocalizations (USVs), which are innate expressions of current emotional state in rats. Rats produced 50 kHz USVs during loading then shifted quickly to 22 kHz calls despite ongoing maintenance oral fentanyl taking, reflecting a transition to negative reinforcement. Using fiber photometry, we found that the lateral habenula differentially processed drug-cues and drug-consumption depending on affective state, with potentiated modulation by drug cues and consumption during the negative affective maintenance phase. Together, these results indicate a rapid progression from positive to negative reinforcement occurs even within an active drug taking session, revealing a within-session opponent process.

6.
Sci Rep ; 13(1): 360, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611053

RESUMO

Water scarcity is a major challenge in the Sahel region of West Africa. Water scarcity in combination with prevalent soil degradation has severely reduced the land productivity in the region. The decrease in resiliency of food security systems of marginalized population has huge societal implications which often leads to mass migrations and conflicts. The U.S. Agency for International Development (USAID) and development organizations have made major investments in the Sahel to improve resilience through land rehabilitation activities in recent years. To help restore degraded lands at the farm level, the World Food Programme (WFP) with assistance from USAID's Bureau for Humanitarian Assistance supported the construction of water and soil retention structures called half-moons. The vegetation growing in the half-moons is vitally important to increase agricultural productivity and feed animals, a critical element of sustainable food security in the region. This paper investigates the effectiveness of interventions at 18 WFP sites in southern Niger using vegetative greenness observations from the Landsat 7 satellite. The pre - and post-intervention analysis shows that vegetation greenness after the half-moon intervention was nearly 50% higher than in the pre-intervention years. The vegetation in the intervened area was more than 25% greener than the nearby control area. Together, the results indicate that the half-moons are effective adaptations to the traditional land management systems to increase agricultural production in arid ecosystems, which is evident through improved vegetation conditions in southern Niger. The analysis shows that the improvement brought by the interventions continue to provide the benefits. Continued application of these adaptation techniques on a larger scale will increase agricultural production and build resilience to drought for subsistence farmers in West Africa. Quantifiable increase in efficacy of local-scale land and water management techniques, and the resulting jump in large-scale investments to scale similar efforts will help farmers enhance their resiliency in a sustainable manner will lead to a reduction in food security shortages.


Assuntos
Ecossistema , Solo , Animais , Níger , África Ocidental , Dinâmica Populacional , Agricultura
7.
Nano Lett ; 22(24): 9958-9963, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36511687

RESUMO

Single-crystal nanowires are of broad interest for applications in nanotechnology. However, such wires are subject to both the Rayleigh-Plateau instability and an ovulation process that are expected to lead to their break up into particle arrays. Single crystal Ru nanowires were fabricated with axes lying along different crystallographic orientations. Wires bound by equilibrium facets along their length did not break up through either a Rayleigh-Plateau or ovulation process, while wires with other orientations broke up through a combination of both. Mechanistic insight is provided using a level-set simulation that accounts for strongly anisotropic surface energies, providing a framework for design of morphologically stable nanostructures.

8.
Biol Psychiatry Glob Open Sci ; 2(2): 180-189, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35441155

RESUMO

Background: Microglia have recently been implicated in opioid dependence and withdrawal. Mu Opioid (MOR) receptors are expressed in microglia, and microglia form intimate connections with nearby neurons. Accordingly, opioids have both direct (MOR mediated) and indirect (neuron-interaction mediated) effects on microglia function. Methods: To investigate this directly, we used RNA sequencing of ribosome-associated RNAs from striatal microglia (RiboTag-Seq) after the induction of morphine tolerance and followed by naloxone precipitated withdrawal (n=16). We validated the RNA-Seq data by combining fluorescent in-situ hybridization with immunohistochemistry for microglia (n=18). Finally, we expressed and activated the Gi/o-coupled hM4Di DREADD receptor in CX3CR1-expressing cells during morphine withdrawal (n=18). Results: We detected large, inverse changes in RNA translation following opioid tolerance and withdrawal. WGCNA analysis revealed an intriguing network of cAMP-associated genes that are known to be involved in microglial motility, morphology, and interactions with neurons that were downregulated with morphine tolerance and upregulated rapidly by withdrawal. Three-dimensional histological reconstruction of microglia allowed for volumetric, visual colocalization of mRNA within individual microglia that validated our bioinformatics results. Direct activation of Gi/o-coupled DREADD receptors in CX3CR1-expressing cells exacerbated signs of opioid withdrawal rather than mimicking the effects of morphine. Conclusions: These results indicate that Gi-signaling and cAMP-associated gene networks are inversely engaged during opioid tolerance and early withdrawal, perhaps revealing a role of microglia in mitigating the consequences of opioids.

9.
Int J Ment Health Addict ; 20(3): 1814-1823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33519318

RESUMO

This study explored the relationship between alcohol and substance use in the general population during the early stages of COVID-19 as related to individual, family, and community stressors. A convenience sample of adults who resided in the USA and Canada was utilized. An online survey was conducted. Over one-third of the sample reported utilizing alcohol and substances as a means to cope during the pandemic. A linear regression revealed that use of social media as a source of information, being personally affected by COVID-19, experiencing child care challenges, and not being associated with a religious community were related to increased likeliness for alcohol and/or substance use. Future research should explore these concepts further within the general population.

10.
Eur J Neurosci ; 54(7): 6397-6405, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505325

RESUMO

The lateral preoptic area is implicated in numerous aspects of substance use disorder. In particular, the lateral preoptic area is highly sensitive to the pharmacological properties of psychomotor stimulants, and its activity promotes drug-seeking in the face of punishment and reinstatement during abstinence. Despite the lateral preoptic area's complicity in substance use disorder, how precisely lateral preoptic area neurons signal the individual components of drug self-administration has not been ascertained. To bridge this gap, we examined how the firing of single lateral preoptic area neurons correlates with three discrete elements of cocaine self-administration: (1) drug-seeking (pre-response), (2) drug-taking (response) and (3) receipt of the cocaine infusion. A significant subset of lateral preoptic area neurons responded to each component with a mix of increases and decreases in firing-rate. A majority of these neurons signal the operant response with increases in spiking, though responses during the drug-seeking, taking and reciept windows were highly correlated.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Condicionamento Operante , Comportamento de Procura de Droga , Humanos , Neurônios , Área Pré-Óptica , Autoadministração
11.
Mol Psychiatry ; 26(9): 4742-4753, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32366949

RESUMO

Serotonin is a key mediator of stress, anxiety, and depression, and novel therapeutic targets within serotonin neurons are needed to combat these disorders. To determine how stress alters the translational profile of serotonin neurons, we sequenced ribosome-associated RNA from these neurons after repeated stress in male and female mice. We identified numerous sex- and stress-regulated genes. In particular, Fkbp5 mRNA, which codes for the glucocorticoid receptor co-chaperone protein FKBP51, was consistently upregulated in male and female mice following stress. Pretreatment with a selective FKBP51 inhibitor into the dorsal raphe prior to repeated forced swim stress decreased resulting stress-induced anhedonia. Our results support previous findings linking FKBP51 to stress-related disorders and provide the first evidence suggesting that FKBP51 function may be an important regulatory node integrating circulating stress hormones and serotonergic regulation of stress responses.


Assuntos
Núcleo Dorsal da Rafe , Neurônios Serotoninérgicos , Anedonia , Animais , Feminino , Masculino , Camundongos , RNA Mensageiro/genética , Serotonina
12.
Neurobiol Stress ; 13: 100268, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33344721

RESUMO

The lateral habenula (LHb) integrates critical information regarding aversive stimuli that shapes decision making and behavioral responses. The three major LHb outputs innervate dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and the rostromedial tegmental nucleus (RMTg). LHb neurons that project to these targets are segregated and nonoverlapping, and this led us to consider whether they have distinct molecular phenotypes and adaptations to stress exposure. In order to capture a time-locked profile of gene expression after repeated forced swim stress, we used intersectional expression of RiboTag in rat LHb neurons and next-gen RNA sequencing to interrogate the RNAs actively undergoing translation from each of these pathways. The "translatome" in the neurons comprising these pathways was similar at baseline, but diverged after stress, especially in the neurons projecting to the RMTg. Using weighted gene co-expression network analysis, we found one module, which had an overrepresentation of genes associated with phosphoinositide 3 kinase (PI3K) signaling, comprising genes downregulated after stress in the RMTg-projecting LHb neurons. Reduced PI3K signaling in RMTg-projecting LHb neurons may be a compensatory adaptation that alters the functional balance of LHb outputs to GABAergic vs. monoaminergic neurons following repeated stress exposure.

13.
Neuropsychopharmacology ; 45(7): 1115-1124, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958800

RESUMO

The lateral habenula (LHb) processes information about aversive experiences that contributes to the symptoms of stress disorders. Previously, we found that chemogenetic inhibition of rat LHb neurons reduced immobility in the forced swim test, but the downstream target of these neurons was not known. Using an intersectional viral vector strategy, we selectively transduced three different output pathways from the LHb by injecting AAV8-DIO-hM4Di into the LHb and CAV2-CRE (a retrograde viral vector) into one of the three target areas as follows: dorsal raphe nucleus (DRN), ventral tegmental area (VTA), or rostromedial tegmentum (RMTg). Using the forced swim test, we found that chemogenetic inhibition of DRN-projecting LHb neurons reduced passive coping (immobility), whereas inhibition of the other pathways did not. Chemogenetic activation of DRN-projecting neurons using hM3Dq in another cohort did not further exacerbate immobility. We next examined the impact of inhibiting DRN-projecting LHb neurons on reward sensitivity, perseverative behavior, and anxiety-like behavior using saccharin preference testing, reward-omission testing, and open-field testing, respectively. There was no effect of inhibiting any of these pathways on reward sensitivity, locomotion, or anxiety-like behavior, but inhibiting DRN-projecting LHb neurons reduced perseverative licking during reward-omission testing, whereas activating these neurons increased perseverative licking. These results support the idea that inhibiting LHb projections to the DRN provides animals with resilience during highly stressful or frustrating conditions but not under low-stress circumstances, and that inhibiting these neurons may promote persistence in active coping strategies.


Assuntos
Adaptação Psicológica/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Habenula/fisiologia , Inibição Neural/fisiologia , Recompensa , Tegmento Mesencefálico/fisiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Vetores Genéticos , Resposta de Imobilidade Tônica/fisiologia , Locomoção/fisiologia , Masculino , Vias Neurais/fisiologia , Ratos , Transfecção
14.
Neuropsychopharmacology ; 44(5): 859-868, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610191

RESUMO

Rodents engage in social communication through a rich repertoire of ultrasonic vocalizations (USVs). Recording and analysis of USVs has broad utility during diverse behavioral tests and can be performed noninvasively in almost any rodent behavioral model to provide rich insights into the emotional state and motor function of the test animal. Despite strong evidence that USVs serve an array of communicative functions, technical and financial limitations have been barriers for most laboratories to adopt vocalization analysis. Recently, deep learning has revolutionized the field of machine hearing and vision, by allowing computers to perform human-like activities including seeing, listening, and speaking. Such systems are constructed from biomimetic, "deep", artificial neural networks. Here, we present DeepSqueak, a USV detection and analysis software suite that can perform human quality USV detection and classification automatically, rapidly, and reliably using cutting-edge regional convolutional neural network architecture (Faster-RCNN). DeepSqueak was engineered to allow non-experts easy entry into USV detection and analysis yet is flexible and adaptable with a graphical user interface and offers access to numerous input and analysis features. Compared to other modern programs and manual analysis, DeepSqueak was able to reduce false positives, increase detection recall, dramatically reduce analysis time, optimize automatic syllable classification, and perform automatic syntax analysis on arbitrarily large numbers of syllables, all while maintaining manual selection review and supervised classification. DeepSqueak allows USV recording and analysis to be added easily to existing rodent behavioral procedures, hopefully revealing a wide range of innate responses to provide another dimension of insights into behavior when combined with conventional outcome measures.


Assuntos
Aprendizado Profundo , Processamento de Sinais Assistido por Computador , Ondas Ultrassônicas , Vocalização Animal , Animais , Aprendizado Profundo/normas , Roedores , Sensibilidade e Especificidade
15.
J Neural Eng ; 15(3): 036002, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29485103

RESUMO

OBJECTIVE: Despite the feasibility of short-term neural recordings using implantable microelectrodes, attaining reliable, chronic recordings remains a challenge. Most neural recording devices suffer from a long-term tissue response, including gliosis, at the device-tissue interface. It was hypothesized that smaller, more flexible intracortical probes would limit gliosis by providing a better mechanical match with surrounding tissue. APPROACH: This paper describes the in vivo evaluation of flexible parylene microprobes designed to improve the interface with the adjacent neural tissue to limit gliosis and thereby allow for improved recording longevity. The probes were coated with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)) polymer that provides temporary mechanical support for device implantation, yet degrades within 2 h post-implantation. A parametric study of probes of varying dimensions and polymer coating thicknesses were implanted in rat brains. The glial tissue response and neuronal loss were assessed from 72 h to 24 weeks post-implantation via immunohistochemistry. MAIN RESULTS: Experimental results suggest that both probe and polymer coating sizes affect the extent of gliosis. When an appropriate sized coating dimension (100 µm × 100 µm) and small probe (30 µm × 5 µm) was implanted, a minimal post-implantation glial response was observed. No discernible gliosis was detected when compared to tissue where a sham control consisting of a solid degradable polymer shuttle of the same dimensions was inserted. A larger polymer coating (200 µm × 200 µm) device induced a more severe glial response at later time points, suggesting that the initial insertion trauma can affect gliosis even when the polymer shuttle degrades rapidly. A larger degree of gliosis was also observed when comparing a larger sized probe (80 µm × 5 µm) to a smaller probe (30 µm × 5 µm) using the same polymer coating size (100 µm × 100 µm). There was no significant neuronal loss around the implantation sites for most device candidates except the group with largest polymer coating and probe sizes. SIGNIFICANCE: These results suggest that: (1) the degree of mechanical trauma at device implantation and mechanical mismatches at the probe-tissue interface affect long term gliosis; (2) smaller, more flexible probes may minimize the glial response to provide improved tissue biocompatibility when used for chronic neural signal recording; and (3) some degree of glial scarring did not significantly affect neuronal distribution around the probe.


Assuntos
Implantes Absorvíveis/tendências , Córtex Cerebral/metabolismo , Eletrodos Implantados/tendências , Neuroglia/metabolismo , Polímeros/metabolismo , Xilenos/metabolismo , Implantes Absorvíveis/efeitos adversos , Animais , Córtex Cerebral/cirurgia , Eletrodos Implantados/efeitos adversos , Eletrodos Implantados/normas , Masculino , Microeletrodos/efeitos adversos , Microeletrodos/normas , Microeletrodos/tendências , Polímeros/síntese química , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Xilenos/síntese química
16.
Eur J Neurosci ; 46(8): 2380-2391, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28887882

RESUMO

Striatal medium spiny projection neurons (MSNs) output through two diverging circuits, the 'direct and indirect pathways' which originate from minimally overlapping populations of MSNs expressing either the dopamine receptor D1 or the dopamine receptor D2. One modern theory of direct and indirect pathway function proposes that activation of direct pathway MSNs facilitates output of desired motor programs, while activation of indirect pathway MSNs inhibits competing motor programs. A separate theory suggests that coordinated timing or synchrony of the direct and indirect pathways is critical for the execution of refined movements. These hypotheses are made testable by a common type of striatal neuron known as type IIb MSNs. Clusters of these MSNs exhibit phasic increases in firing rate related to sensorimotor activity of single body parts. If these MSNs were to reside in only the direct pathway, evidence would be provided that D1 MSNs are 'motor program' specific, which would lend credence to the 'competing motor programs' hypothesis. However, if type IIb MSNs reside in both pathways, evidence would be provided for the 'coordinated timing or synchrony' hypothesis. Our results show that type IIb neurons may express either D1 or D2. This evidence supports the theory that the coordinated timing or synchrony of the direct and indirect pathways is critical for refined movements. We also propose a model in which the direct and indirect pathways act as a differentiator circuit, providing a possible mechanism by which coordinated activity of D1 and D2 neurons may output meaningful somatosensorimotor information to downstream structures.


Assuntos
Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Potenciais de Ação , Animais , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Potenciais Sinápticos
17.
ACS Sens ; 2(5): 621-625, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28723172

RESUMO

Periodically patterned Au nanorods in TiO2 nanocavities (Au NRs@TiO2) were fabricated via magnetron sputtering followed by a thermal dewetting process. This innovative Au NRs@TiO2 heterostructure was used as a plasmonic sensing platform for photoelectrochemical detection of glucose and lactose. This Au NRs@TiO2 patterned heterostructure possesses superior sensing properties to other Au nanoparticle-based sensors because (i) localized surface plasmon resonance (LSPR) generated at Au/TiO2 interfaces enhanced sensitivity of glucose (lactose) amperometric detection; (ii) periodic Au nanocrystals in TiO2 nanocavities accelerated charge separation and transfer rate, especially under monochromatic blue light irradiation; (iii) discrete planar architectures comprising Au NRs immobilized on TiO2 substrates significantly improved stability and reusability of the sensors. A low detection limit of 1 µM (10 µM) and a high sensitivity of 812 µA mM-1 cm-2 (270 µA mM-1 cm-2) were achieved on the Au NRs@TiO2 heterostructures for glucose (lactose) detection without the addition of enzymes. Good selectivity and superb stability over more than 8 weeks was also demonstrated using these Au NRs@TiO2 heterostructures for glucose (lactose) detection. Additionally, this cost-efficient technique can be easily extended to other photoelectrochemical sensing systems when considering the combination of sensing and visible or infrared light source enhancement.

18.
Brain Res ; 1657: 101-108, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27914882

RESUMO

Numerous studies have shown that certain types of striatal interneurons play a crucial role in selection and regulation of striatal output. Striatal Fast-Spiking Interneurons (FSIs) are parvalbumin positive, GABAergic interneurons that constitute less than 1% of the total striatal population. It is becoming increasingly evident that these sparsely distributed neurons exert a strong inhibitory effect on Medium Spiny projection Neurons (MSNs). MSNs in lateral striatum receive direct synaptic input from regions of cortex representing discrete body parts, and show phasic increases in activity during touch or movement of specific body parts. In the present study, we sought to determine whether lateral striatal FSIs identified by their electrophysiological properties, i.e., short-duration spike and fast firing rate (FR), display body part sensitivity similar to that exhibited by MSNs. During video recorded somatosensorimotor exams, each individual body part was stimulated and responses of single neurons were observed and quantified. Individual FSIs displayed patterns of activity related selectively to stimulation of a discrete body part. Most patterns of activity were similar to those exhibited by typical MSNs, but some phasic decreases were observed. These results serve as evidence that some striatal FSIs process information related to discrete body parts and participate in sensorimotor processing by striatal networks that contribute to motor output. STATEMENT OF SIGNIFICANCE: Parvalbumin positive, striatal FSIs are hypothesized to play an important role in behavior by inhibiting MSNs. We asked a fundamental question regarding information processed during behavior by FSIs: whether FSIs, which preferentially occupy the sensorimotor portion of the striatum, process activity of discrete body parts. Our finding that they do, in a selective manner similar to MSNs, begins to reveal the types of phasic signals that FSI feed forward to projection neurons during striatal processing of cortical input regarding a specific sensorimotor event. These findings suggest new avenues for testing feed-forward inhibition theory as applied to striatum in naturalistic conditions, such as whether FSI decreases facilitate excitation of MSNs related to the current movement while FSI increases silence MSNs unrelated to the current movement.


Assuntos
Corpo Estriado/fisiologia , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Percepção do Tato/fisiologia , Potenciais de Ação , Animais , Análise por Conglomerados , Corpo Estriado/citologia , Eletrodos Implantados , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Imuno-Histoquímica , Interneurônios/citologia , Masculino , Atividade Motora/fisiologia , Estimulação Física , Ratos Long-Evans , Processamento de Sinais Assistido por Computador , Gravação em Vídeo
19.
ACS Appl Mater Interfaces ; 8(51): 34970-34977, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27958697

RESUMO

Novel Au@TiO2 plasmonic films were fabricated by individually placing Au nanoparticles into TiO2 nanocavity arrays through a sputtering and dewetting process. These discrete Au nanoparticles in TiO2 nanocavities showed strong visible-light absorption due to the plasmonic resonance. Photoelectrochemical studies demonstrated that the developed Au@TiO2 plasmonic films exhibited significantly enhanced catalytic activities toward oxygen reduction reactions with an onset potential of 0.92 V (vs reversible hydrogen electrode), electron transfer number of 3.94, and limiting current density of 5.2 mA cm-2. A superior ORR activity of 310 mA mg-1 is achieved using low Au loading mass. The isolated Au nanoparticle size remarkably affected the catalytic activities of Au@TiO2, and TiO2 coated with 5 nm Au (Au5@TiO2) exhibited the best catalytic function to reduce oxygen. The plasmon-enhanced reductive activity is attributed to the surface plasmonic resonance of isolated Au nanoparticles in TiO2 nanocavities and suppressed electron recombination. This work provides comprehensive understanding of a novel plasmonic system using isolated noble metals into nanostructured semiconductor films as a potential alternative catalyst for oxygen reduction reaction.

20.
Brain Res ; 1636: 200-207, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26827625

RESUMO

Interest in the dorsolateral striatum (DLS) has generated numerous scientific studies of its neuropathologies, as well as its roles in normal sensorimotor integration and learning. Studies are informed by knowledge of DLS functional organization, the guiding principle being its somatotopic afferent projections from primary somatosensory (S1) and motor (M1) cortices. The potential to connect behaviorally relevant function to detailed structure is elevated by mouse models, which have access to extensive genetic neuroscience tool kits. Remaining to be demonstrated, however, is whether the correspondence between S1/M1 corticostriatal terminal distributions and the physiological properties of DLS neurons demonstrated in rats and non-human primates exists in mice. Given that the terminal distribution of S1/M1 projections to the DLS in mice is similar to that in rats, we studied whether firing rates (FRs) of DLS neurons in awake, behaving mice are related to activity of individual body parts. MSNs exhibited robust, selective increases in FR during movement or somatosensory stimulation of single body parts. Properties of MSNs, including baseline FRs, locations, responsiveness to stimulation, and proportions of responsive neurons were similar to properties observed in rats. Future studies can be informed by the present demonstration that the mouse lateral striatum functions as a somatic sensorimotor sector of the striatum and appears to be a homolog of the primate putamen, as demonstrated in rats (Carelli and West, 1991).


Assuntos
Vias Aferentes/fisiologia , Corpo Estriado/citologia , Corpo Humano , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Astrócitos/fisiologia , Mapeamento Encefálico , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Movimento/fisiologia , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...