Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 12(1): 1140, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602902

RESUMO

Clostridioides difficile spores produced during infection are important for the recurrence of the disease. Here, we show that C. difficile spores gain entry into the intestinal mucosa via pathways dependent on host fibronectin-α5ß1 and vitronectin-αvß1. The exosporium protein BclA3, on the spore surface, is required for both entry pathways. Deletion of the bclA3 gene in C. difficile, or pharmacological inhibition of endocytosis using nystatin, leads to reduced entry into the intestinal mucosa and reduced recurrence of the disease in a mouse model. Our findings indicate that C. difficile spore entry into the intestinal barrier can contribute to spore persistence and infection recurrence, and suggest potential avenues for new therapies.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Intestinos/microbiologia , Intestinos/patologia , Esporos Bacterianos/fisiologia , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Linhagem Celular , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/ultraestrutura , Colágeno/metabolismo , Endocitose , Células Epiteliais/ultraestrutura , Feminino , Fibronectinas/metabolismo , Humanos , Integrinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Nistatina/farmacologia , Ligação Proteica/efeitos dos fármacos , Recidiva , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/ultraestrutura , Ácido Taurocólico/farmacologia , Vitronectina/metabolismo
3.
Sci Rep ; 10(1): 15064, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934247

RESUMO

Impaired wound healing complicates a wide range of diseases and represents a major cost to healthcare systems. Here we describe the use of discarded wound dressings as a novel, cost effective, accessible, and non-invasive method of isolating viable human cells present at the site of skin wounds. By analyzing 133 discarded wound dressings from 51 patients with the inherited skin-blistering disease epidermolysis bullosa (EB), we show that large numbers of cells, often in excess of 100 million per day, continually infiltrate wound dressings. We show, that the method is able to differentiate chronic from acute wounds, identifying significant increases in granulocytes in chronic wounds, and we show that patients with the junctional form of EB have significantly more cells infiltrating their wounds compared with patients with recessive dystrophic EB. Finally, we identify subsets of granulocytes and T lymphocytes present in all wounds paving the way for single cell profiling of innate and adaptive immune cells with relevance to wound pathologies. In summary, our study delineates findings in EB that have potential relevance for all chronic wounds, and presents a method of cellular isolation that has wide reaching clinical application.


Assuntos
Bandagens , Separação Celular , Epidermólise Bolhosa , Granulócitos , Linfócitos T , Cicatrização , Doença Aguda , Adulto , Doença Crônica , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/patologia , Epidermólise Bolhosa/terapia , Granulócitos/metabolismo , Granulócitos/patologia , Humanos , Masculino , Linfócitos T/metabolismo , Linfócitos T/patologia
4.
Anaerobe ; 36: 30-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403333

RESUMO

One of the main clinical challenges of Clostridium difficile infections (CDI) is the high rate of relapse episodes. The main determinants involved in relapse of CDI include the presence of antibiotic-resistant C. difficile spores in the colonic environment and a permanent state of dysbiosis of the microbiota caused by antibiotic therapy. A possible scenario is that phenotypes related to the persistence of C. difficile spores might contribute to relapsing infections. In this study, 8 C. difficile isolates recovered from 4 cases with relapsing infection, and 9 isolates recovered from single infection cases were analyzed for PCR ribotyping and the presence of tcdA, tcdB and cdtAB genes. Factors associated to spore persistence, sporulation, spore adherence and biofilm formation and sporulation during biofilm formation were characterized. We also evaluated motility and cytotoxicity. However, we observed no significant difference in the analyzed phenotypes among the different clinical outcomes, most likely due to the high variability observed among strains within clinical backgrounds in each phenotype and the small sample size. It is noteworthy that C. difficile spores adhered to similar extents to undifferentiated and differentiated Caco-2 cells. By contrast, spores of all clinical isolates tested had increased germination efficiency in presence of taurocholate, while decreased sporulation rate during biofilm development in the presence of glucose. In conclusion, these results show that, at least in this cohort of patients, the described phenotypes are not detrimental in the clinical outcome of the disease.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Células CACO-2 , Clostridioides difficile/genética , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/fisiologia , Infecções por Clostridium/patologia , Estudos de Coortes , Farmacorresistência Bacteriana , Humanos , Fenótipo , Recidiva , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/patogenicidade , Virulência
5.
J Bacteriol ; 195(17): 3863-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23794627

RESUMO

Clostridium difficile is an important nosocomial pathogen that has become a major cause of antibiotic-associated diarrhea. There is a general consensus that C. difficile spores play an important role in C. difficile pathogenesis, contributing to infection, persistence, and transmission. Evidence has demonstrated that C. difficile spores have an outermost layer, termed the exosporium, that plays some role in adherence to intestinal epithelial cells. Recently, the protein encoded by CD1067 was shown to be present in trypsin-exosporium extracts of C. difficile 630 spores. In this study, we renamed the CD1067 protein Clostridium difficile exosporium cysteine-rich protein (CdeC) and characterized its role in the structure and properties of C. difficile spores. CdeC is expressed under sporulation conditions and localizes to the C. difficile spore. Through the construction of an ΔcdeC isogenic knockout mutant derivative of C. difficile strain R20291, we demonstrated that (i) the distinctive nap layer is largely missing in ΔcdeC spores; (ii) CdeC is localized in the exosporium-like layer and is accessible to IgGs; (iii) ΔcdeC spores were more sensitive to lysozyme, ethanol, and heat treatment than wild-type spores; and (iv) despite the almost complete absence of the exosporium layer, ΔcdeC spores adhered at higher levels than wild-type spores to intestinal epithelium cell lines (i.e., HT-29 and Caco-2 cells). Collectively, these results indicate that CdeC is essential for exosporium morphogenesis and the correct assembly of the spore coat of C. difficile.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/citologia , Clostridioides difficile/enzimologia , Esporos Bacterianos/citologia , Esporos Bacterianos/enzimologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular , Clostridioides difficile/metabolismo , Clostridioides difficile/fisiologia , Células Epiteliais/microbiologia , Deleção de Genes , Humanos , Esporos Bacterianos/metabolismo , Esporos Bacterianos/fisiologia
6.
PLoS One ; 7(8): e43635, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952726

RESUMO

BACKGROUND: Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.


Assuntos
Clostridioides difficile/fisiologia , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Animais , Linhagem Celular , Sobrevivência Celular , Macrófagos/citologia , Camundongos , Fagocitose , Fagossomos/microbiologia , Sonicação , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...