Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36677464

RESUMO

Gram-positive bacterial infections are a major cause of organ failure and mortality in sepsis. Cell wall peptidoglycan (PGN) is shed during bacterial replication, and Bacillus anthracis PGN promotes a sepsis-like pathology in baboons. Herein, we determined the ability of polymeric Bacillus anthracis PGN free from TLR ligands to shape human dendritic cell (DC) responses that are important for the initiation of T cell immunity. Monocyte-derived DCs from healthy donors were incubated with PGN polymers isolated from Bacillus anthracis and Staphylococcus aureus. PGN activated the human DCs, as judged by the increased expression of surface HLA-DR, CD83, the T cell costimulatory molecules CD40 and CD86, and the chemokine receptor CCR7. PGN elicited the DC production of IL-23, IL-6, and IL-1ß but not IL-12p70. The PGN-stimulated DCs induced the differentiation of naïve allogeneic CD4+ T cells into T helper (TH) cells producing IL-17 and IL-21. Notably, the DCs from a subset of donors did not produce significant levels of IL-23 and IL-1ß upon PGN stimulation, suggesting that common polymorphisms in immune response genes regulate the PGN response. In sum, purified PGN is a highly stimulatory cell wall component that activates human DCs to secrete proinflammatory cytokines and promote the differentiation of TH17 cells that are important for neutrophil recruitment in extracellular bacterial infections.

2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507997

RESUMO

Late-stage anthrax infections are characterized by dysregulated immune responses and hematogenous spread of Bacillus anthracis, leading to extreme bacteremia, sepsis, multiple organ failure, and, ultimately, death. Despite the bacterium being nonhemolytic, some fulminant anthrax patients develop a secondary atypical hemolytic uremic syndrome (aHUS) through unknown mechanisms. We recapitulated the pathology in baboons challenged with cell wall peptidoglycan (PGN), a polymeric, pathogen-associated molecular pattern responsible for the hemostatic dysregulation in anthrax sepsis. Similar to aHUS anthrax patients, PGN induces an initial hematocrit elevation followed by progressive hemolytic anemia and associated renal failure. Etiologically, PGN induces erythrolysis through direct excessive activation of all three complement pathways. Blunting terminal complement activation with a C5 neutralizing peptide prevented the progressive deposition of membrane attack complexes on red blood cells (RBC) and subsequent intravascular hemolysis, heme cytotoxicity, and acute kidney injury. Importantly, C5 neutralization did not prevent immune recognition of PGN and shifted the systemic inflammatory responses, consistent with improved survival in sepsis. Whereas PGN-induced hemostatic dysregulation was unchanged, C5 inhibition augmented fibrinolysis and improved the thromboischemic resolution. Overall, our study identifies PGN-driven complement activation as the pathologic mechanism underlying hemolytic anemia in anthrax and likely other gram-positive infections in which PGN is abundantly represented. Neutralization of terminal complement reactions reduces the hemolytic uremic pathology induced by PGN and could alleviate heme cytotoxicity and its associated kidney failure in gram-positive infections.


Assuntos
Injúria Renal Aguda/prevenção & controle , Anemia Hemolítica/prevenção & controle , Bacillus anthracis/química , Parede Celular/química , Complemento C5/antagonistas & inibidores , Peptidoglicano/toxicidade , Sepse/complicações , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Anemia Hemolítica/etiologia , Anemia Hemolítica/patologia , Animais , Antraz/microbiologia , Antraz/patologia , Feminino , Hemólise , Masculino , Papio , Sepse/induzido quimicamente
3.
Microorganisms ; 8(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668703

RESUMO

Neutrophils are the most abundant innate cell population and a key immune player against invading pathogens. Neutrophils can kill both bacterium and spores of Bacillus anthracis, the causative anthrax pathogen. Unlike interactions with professional phagocytes, the molecular recognition of anthrax by neutrophils is largely unknown. In this study, we investigated the role of complement C3 deposition on anthrax particles for neutrophil recognition of bacterium and/or its cell wall peptidoglycan, an abundant pathogen-associated molecular pattern that supports anthrax sepsis. C3 opsonization and recognition by complement receptors accounted for 70-80% of the affinity interactions between neutrophils and anthrax particles at subphysiologic temperatures. In contrast, C3 supported up to 50% of the anthrax particle ingestion under thermophysiologic conditions. Opsonin-dependent low affinity interactions and, to a lower extent, opsonin-independent mechanisms, provide alternative entry routes. Similarly, C3 supported 58% of peptidoglycan-induced degranulation and, to a lower extent, 23% of bacterium-induced degranulation. Interestingly, an opsonin independent mechanism mediated by complement C5, likely through C5a anaphylatoxin, primes azurophilic granules in response to anthrax particles. Overall, we show that C3 deposition supports anthrax recognition by neutrophils but is dispensable for pathogen ingestion and neutrophil degranulation, highlighting immune recognition redundancies that minimize the risk of pathogen evasion.

4.
Blood Adv ; 3(16): 2436-2447, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31416821

RESUMO

Disseminated intravascular coagulation is a frequent manifestation during bacterial infections and is associated with negative clinical outcomes. Imbalanced expression and activity of intravascular tissue factor (TF) is central to the development of infection-associated coagulopathies. Recently, we showed that anthrax peptidoglycan (PGN) induces disseminated intravascular coagulation in a nonhuman primate model of anthrax sepsis. We hypothesized that immune recognition of PGN by monocytes is critical for procoagulant responses to PGN and investigated whether and how PGN induces TF expression in primary human monocytes. We found that PGN induced monocyte TF expression in a large cohort of healthy volunteers similar to lipopolysaccharide stimulation. Both immune and procoagulant responses to PGN involve intracellular recognition after PGN internalization, as well as surface signaling through immune Fcγ receptors (FcγRs). In line with our hypothesis, blocking immune receptor function, both signaling and FcγR-mediated phagocytosis, significantly reduced but did not abolish PGN-induced monocyte TF expression, indicating that FcγR-independent internalization contributes to intracellular recognition of PGN. Conversely, when intracellular PGN recognition is abolished, TF expression was sensitive to inhibitors of FcγR signaling, indicating that surface engagement of monocyte immune receptors can promote TF expression. The primary procoagulant responses to PGN were further amplified by proinflammatory cytokines through paracrine and autocrine signaling. Despite intersubject variability in the study cohort, dual neutralization of tumor necrosis factor-α and interleukin-1ß provided the most robust inhibition of the procoagulant amplification loop and may prove useful for reducing coagulopathies in gram-positive sepsis.


Assuntos
Antraz/imunologia , Coagulação Sanguínea/imunologia , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Peptidoglicano/imunologia , Transdução de Sinais , Biomarcadores , Coagulação Sanguínea/efeitos dos fármacos , Brefeldina A/farmacologia , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/imunologia , Monócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tromboplastina/metabolismo
5.
Blood ; 132(8): 849-860, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-29921614

RESUMO

Anthrax infections exhibit progressive coagulopathies that may contribute to the sepsis pathophysiology observed in fulminant disease. The hemostatic imbalance is recapitulated in primate models of late-stage disease but is uncommon in toxemic models, suggesting contribution of other bacterial pathogen-associated molecular patterns (PAMPs). Peptidoglycan (PGN) is a bacterial PAMP that engages cellular components at the cross talk between innate immunity and hemostasis. We hypothesized that PGN is critical for anthrax-induced coagulopathies and investigated the activation of blood coagulation in response to a sterile PGN infusion in primates. The PGN challenge, like the vegetative bacteria, induced a sepsis-like pathophysiology characterized by systemic inflammation, disseminated intravascular coagulation (DIC), organ dysfunction, and impaired survival. Importantly, the hemostatic impairment occurred early and in parallel with the inflammatory response, suggesting direct engagement of coagulation pathways. PGN infusion in baboons promoted early activation of contact factors evidenced by elevated protease-serpin complexes. Despite binding to contact factors, PGN did not directly activate either factor XII (FXII) or prekallikrein. PGN supported contact coagulation by enhancing enzymatic function of active FXII (FXIIa) and depressing its inhibition by antithrombin. In parallel, PGN induced de novo monocyte tissue factor expression in vitro and in vivo, promoting extrinsic clotting reactions at later stages. Activation of platelets further amplified the procoagulant state during PGN challenge, leading to DIC and subsequent ischemic damage of peripheral tissues. These data indicate that PGN may be a major cause for the pathophysiologic progression of Bacillus anthracis sepsis and is the primary PAMP behind the pathogen-induced coagulopathy in late-stage anthrax.


Assuntos
Antraz/metabolismo , Bacillus anthracis , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Intravascular Disseminada/sangue , Monócitos/metabolismo , Animais , Antraz/patologia , Coagulação Intravascular Disseminada/induzido quimicamente , Coagulação Intravascular Disseminada/patologia , Fator XIIa/metabolismo , Feminino , Masculino , Monócitos/patologia , Papio , Papio anubis , Pré-Calicreína/metabolismo
6.
Microb Pathog ; 121: 9-21, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29704667

RESUMO

The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1ß (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROß and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax.


Assuntos
Células Epiteliais Alveolares/microbiologia , Bacillus anthracis/patogenicidade , Quimiocinas/metabolismo , Perfilação da Expressão Gênica , Esporos Bacterianos/patogenicidade , Antraz/genética , Antraz/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Quimiocinas/genética , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Monócitos/metabolismo , Monócitos/microbiologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Regulação para Cima
7.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531132

RESUMO

We showed that human IgG supported the response by human innate immune cells to peptidoglycan (PGN) from Bacillus anthracis and PGN-induced complement activation. However, other serum constituents have been shown to interact with peptidoglycan, including the IgG-like soluble pattern recognition receptor serum amyloid P (SAP). Here, we compared the abilities of SAP and of IgG to support monocyte and complement responses to PGN. Utilizing in vitro methods, we demonstrate that SAP is superior to IgG in supporting monocyte production of cytokines in response to PGN. Like IgG, the response supported by SAP was enhanced by phagocytosis and signaling kinases, such as Syk, Src, and phosphatidylinositol 3-kinase, that are involved in various cellular processes, including Fc receptor signaling. Unlike IgG, SAP had no effect on the activation of complement in response to PGN. These data demonstrate an opsonophagocytic role for SAP in response to PGN that propagates a cellular response without propagating the formation of the terminal complement complex.


Assuntos
Bacillus anthracis/imunologia , Imunidade Inata/imunologia , Imunoglobulina G/imunologia , Peptidoglicano/imunologia , Componente Amiloide P Sérico/imunologia , Humanos
8.
PLoS One ; 13(2): e0193207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474374

RESUMO

Peptidoglycan (PGN), a major component of bacterial cell walls, is a pathogen-associated molecular pattern (PAMP) that causes innate immune cells to produce inflammatory cytokines that escalate the host response during infection. In order to better understand the role of PGN in infection, we wanted to gain insight into the cellular receptor for PGN. Although the receptor was initially identified as Toll-like receptor 2 (TLR2), this receptor has remained controversial and other PGN receptors have been reported. We produced PGN from live cultures of Bacillus anthracis and Staphylococcus aureus and tested samples of PGN isolated during the purification process to determine at what point TLR2 activity was removed, if at all. Our results indicate that although live B. anthracis and S. aureus express abundant TLR2 ligands, highly-purified PGN from either bacterial source is not recognized by TLR2.


Assuntos
Bacillus anthracis/química , Imunidade Inata/efeitos dos fármacos , Peptidoglicano/farmacologia , Staphylococcus aureus/química , Receptor 2 Toll-Like/imunologia , Animais , Bacillus anthracis/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Peptidoglicano/química , Peptidoglicano/imunologia , Staphylococcus aureus/imunologia , Receptor 2 Toll-Like/genética
9.
Proc Natl Acad Sci U S A ; 114(31): E6390-E6399, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28720697

RESUMO

Bacterial sepsis triggers robust activation of the complement system with subsequent generation of anaphylatoxins (C3a, C5a) and the terminal complement complex (TCC) that together contribute to organ failure and death. Here we tested the effect of RA101295, a 2-kDa macrocyclic peptide inhibitor of C5 cleavage, using in vitro whole-blood assays and an in vivo baboon model of Escherichia coli sepsis. RA101295 strongly inhibited E. coli-induced complement activation both in vitro and in vivo by blocking the generation of C5a and the soluble form of TCC, sC5b-9. RA101295 reduced the E. coli-induced "oxidative burst," as well as leukocyte activation, without affecting host phagocytosis of E. coli RA101295 treatment reduced plasma LPS content in E. coli-challenged baboons, implying reduced complement-mediated bacteriolysis, whereas treated animals showed slightly improved bacterial clearance during the bacteremic stage compared with controls. Treatment with RA101295 also improved consumptive coagulopathy and preserved endothelial anticoagulant and vascular barrier functions. RA101295 abolished sepsis-induced surges in proinflammatory cytokines and attenuated systemic circulatory and febrile responses, likely reflecting decreased systemic levels of LPS and C5a. Overall, RA101295 treatment was associated with significant organ protection and markedly reduced mortality compared with nontreated controls (four of five animals survived in a 100% lethal model). We therefore conclude that inhibition of C5 cleavage during the bacteremic stage of sepsis could be an important therapeutic approach to prevent sepsis-induced inflammation, consumptive coagulopathy, and subsequent organ failure and death.

10.
Cell ; 166(3): 624-636, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27374331

RESUMO

Degradation of Gram-positive bacterial cell wall peptidoglycan in macrophage and dendritic cell phagosomes leads to activation of the NLRP3 inflammasome, a cytosolic complex that regulates processing and secretion of interleukin (IL)-1ß and IL-18. While many inflammatory responses to peptidoglycan are mediated by detection of its muramyl dipeptide component in the cytosol by NOD2, we report here that NLRP3 inflammasome activation is caused by release of N-acetylglucosamine that is detected in the cytosol by the glycolytic enzyme hexokinase. Inhibition of hexokinase by N-acetylglucosamine causes its dissociation from mitochondria outer membranes, and we found that this is sufficient to activate the NLRP3 inflammasome. In addition, we observed that glycolytic inhibitors and metabolic conditions affecting hexokinase function and localization induce inflammasome activation. While previous studies have demonstrated that signaling by pattern recognition receptors can regulate metabolic processes, this study shows that a metabolic enzyme can act as a pattern recognition receptor. PAPERCLIP.


Assuntos
Hexoquinase/metabolismo , Inflamassomos/metabolismo , Peptidoglicano/metabolismo , Receptores Imunológicos/metabolismo , Acetilação , Acetilglucosamina/metabolismo , Animais , Bacillus anthracis/metabolismo , Parede Celular/metabolismo , Células Dendríticas/metabolismo , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo
11.
Microbes Infect ; 18(10): 615-626, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27320392

RESUMO

The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores escape from the alveolus to regional lymph nodes, germinate and enter the circulatory system to cause disease. The roles of carrier cells and the effects of B. anthracis toxins in this process are unclear. We used a human lung organ culture model to measure spore uptake by antigen presenting cells (APC) and alveolar epithelial cells (AEC), spore partitioning between these cells, and the effects of B. anthracis lethal toxin and protective antigen. We repeated the study in a human A549 alveolar epithelial cell model. Most spores remained unassociated with cells, but the majority of cell-associated spores were in AEC, not in APC. Spore movement was not dependent on internalization, although the location of internalized spores changed in both cell types. Spores also internalized in a non-uniform pattern. Toxins affected neither transit of the spores nor the partitioning of spores into AEC and APC. Our results support a model of spore escape from the alveolus that involves spore clustering with transient passage through intact AEC. However, subsequent transport of spores by APC from the lung to the lymph nodes may occur.


Assuntos
Antraz/patologia , Antígenos de Bactérias/metabolismo , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/metabolismo , Pulmão/microbiologia , Linfonodos/microbiologia , Movimento , Esporos Bacterianos/patogenicidade , Células Apresentadoras de Antígenos/microbiologia , Sangue/microbiologia , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Modelos Teóricos , Técnicas de Cultura de Órgãos
12.
Arthritis Rheumatol ; 66(9): 2521-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24891301

RESUMO

OBJECTIVE: To assess disease features in Sle1.Yaa mice with genetic interleukin-6 (IL-6) deficiency. METHODS: Sera and tissues were collected from C57BL/6 (B6), Sle1.Yaa, and Sle1.Yaa.IL-6(-/-) mice and analyzed for various features of disease. Using serum samples, autoantibody specificities were determined by enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence, cytokine production was analyzed by Luminex and ELISA, and levels of blood urea nitrogen were determined by ELISA. Renal, lung, and salivary gland tissue sections were evaluated for pathologic changes. Lymphocyte phenotypes, including CD4+ T cell cytokine production, and those of follicular and extrafollicular T helper subsets, germinal center B cells, and plasma cells, were determined using flow cytometry. RESULTS: IL-6 deficiency not only ameliorated autoantibody production and renal disease in this model, but also effectively reduced inflammation of lungs and salivary glands. Furthermore, IL-6 deficiency abrogated differentiation of Th1 and extrafollicular T helper cells, germinal center B cells, and plasma cells in the spleen and eliminated renal T cells with IL-17, interferon-γ, and IL-21 production potential. CONCLUSION: Our findings highlight IL-6-mediated T cell aberrations in Yaa-driven autoimmunity and support the concept of therapeutic IL-6/IL-6 receptor blockade in systemic lupus erythematosus and Sjögren's syndrome by impairing the production of autoantibodies and lymphocytic infiltration of the kidneys, lungs, and salivary glands.


Assuntos
Interleucina-6/deficiência , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos/imunologia , Nefrite/imunologia , Síndrome de Sjogren/imunologia , Animais , Citometria de Fluxo , Interleucina-6/sangue , Pulmão/imunologia , Pulmão/patologia , Lúpus Eritematoso Sistêmico/patologia , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/patologia , Plasmócitos/imunologia , Plasmócitos/patologia , Glândulas Salivares/imunologia , Glândulas Salivares/patologia , Síndrome de Sjogren/patologia , Células Th1/imunologia , Células Th1/patologia
13.
Thromb Res ; 133 Suppl 1: S28-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24759136

RESUMO

Sepsis is a potent activator of the hemostatic and complement systems. While local activation of these proteolytic cascades contributes to the host defense, their uncontrolled systemic activation has major tissue damaging effects that lead to multiple organ failure and death. We have extensively studied the activation of complement and coagulation cascades in experimental sepsis using baboons challenged with live bacteria, such as Gram-negative Escherichia coli or Gram-positive Staphylococcus aureus and Bacillus anthracis, or with the bacterial product peptidoglycan. We observed that these challenges rapidly induce disseminated intravascular coagulation and robust complement activation. We applied a potent C3 convertase inhibitor, compstatin, which prevented sepsis-induced complement activation, reduced thrombocytopenia, decreased the coagulopathic responses, and preserving the endothelial anticoagulant properties. Overall, our work demonstrates that live bacteria and bacterial products activate the complement and coagulation cascades, and that blocking formation of complement activation products, especially during the organ failure stage of severe sepsis could be a potentially important therapeutic strategy.


Assuntos
Coagulação Sanguínea , Proteínas do Sistema Complemento/imunologia , Sepse/sangue , Sepse/imunologia , Animais , Ativação do Complemento , Modelos Animais de Doenças , Coagulação Intravascular Disseminada/sangue , Coagulação Intravascular Disseminada/etiologia , Coagulação Intravascular Disseminada/imunologia , Humanos , Imunidade Inata , Papio , Sepse/complicações
14.
J Immunol ; 191(6): 3319-27, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23966633

RESUMO

The human pathogen Staphylococcus aureus is responsible for many community-acquired and hospital-associated infections and is associated with high mortality. Concern over the emergence of multidrug-resistant strains has renewed interest in the elucidation of host mechanisms that defend against S. aureus infection. We recently demonstrated that human serum mannose-binding lectin binds to S. aureus wall teichoic acid (WTA), a cell wall glycopolymer--a discovery that prompted further screening to identify additional serum proteins that recognize S. aureus cell wall components. In this report, we incubated human serum with 10 different S. aureus mutants and determined that serum amyloid P component (SAP) bound specifically to a WTA-deficient S. aureus ΔtagO mutant, but not to tagO-complemented, WTA-expressing cells. Biochemical characterization revealed that SAP recognizes bacterial peptidoglycan as a ligand and that WTA inhibits this interaction. Although SAP binding to peptidoglycan was not observed to induce complement activation, SAP-bound ΔtagO cells were phagocytosed by human polymorphonuclear leukocytes in an FcγR-dependent manner. These results indicate that SAP functions as a host defense factor, similar to other peptidoglycan recognition proteins and nucleotide-binding oligomerization domain-like receptors.


Assuntos
Proteínas de Transporte/imunologia , Fagocitose/imunologia , Componente Amiloide P Sérico/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Western Blotting , Citometria de Fluxo , Humanos
15.
Infect Immun ; 81(10): 3693-702, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23876807

RESUMO

Here, we describe the capacity of Bacillus anthracis peptidoglycan (BaPGN) to trigger an antimicrobial response in human white blood cells (WBCs). Analysis of freshly isolated human blood cells found that monocytes and neutrophils, but not B and T cells, were highly responsive to BaPGN and produced a variety of cytokines and chemokines. This BaPGN-induced response was suppressed by anthrax lethal toxin (LT) and edema toxin (ET), with the most pronounced effect on human monocytes, and this corresponded with the higher levels of anthrax toxin receptor 1 (ANTXR1) in these cells than in neutrophils. The supernatant from BaPGN-treated cells altered the growth of B. anthracis Sterne, and this effect was blocked by LT, but not by ET. An FtsX mutant of B. anthracis known to be resistant to the antimicrobial effects of interferon-inducible Glu-Leu-Arg (ELR)-negative CXC chemokines was not affected by the BaPGN-induced antimicrobial effects. Collectively, these findings describe a system in which BaPGN triggers expression of antimicrobial factors in human WBCs and reveal a distinctive role, not shared with ET, in LT's capacity to suppress this response.


Assuntos
Bacillus anthracis/metabolismo , Toxinas Bacterianas/farmacologia , Citocinas/metabolismo , Leucócitos/efeitos dos fármacos , Peptidoglicano/farmacologia , Adulto , Bacillus anthracis/química , Células Cultivadas , Citocinas/genética , Humanos , Leucócitos/metabolismo , Pessoa de Meia-Idade , Peptidoglicano/genética , Peptidoglicano/metabolismo , Adulto Jovem
16.
Blood ; 122(4): 571-9, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23733338

RESUMO

Platelet activation frequently accompanies sepsis and contributes to the sepsis-associated vascular leakage and coagulation dysfunction. Our previous work has implicated peptidoglycan (PGN) as an agent causing systemic inflammation in gram-positive sepsis. We used flow cytometry and fluorescent microscopy to define the effects of PGN on the activation of human platelets. PGN induced platelet aggregation, expression of the activated form of integrin αIIbß3, and exposure of phosphatidylserine (PS). These changes were dependent on immunoglobulin G and were attenuated by the Fcγ receptor IIa-blocking antibody IV.3, suggesting they are mediated by PGN-anti-PGN immune complexes signaling through Fcγ receptor IIa. PS exposure was not blocked by IV.3 but was sensitive to inhibitors of complement activation. PGN was a potent activator of the complement cascade in human plasma and caused deposition of C5b-9 on the platelet surface. Platelets with exposed PS had greatly accelerated prothrombinase activity. We conclude that PGN derived from gram-positive bacteria is a potent platelet agonist when complexed with anti-PGN antibody and could contribute to the coagulation dysfunction accompanying gram-positive infections.


Assuntos
Bacillus anthracis/imunologia , Proteínas do Sistema Complemento/fisiologia , Peptidoglicano/imunologia , Ativação Plaquetária , Receptores de IgG/fisiologia , Bacillus anthracis/química , Plaquetas/imunologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunoglobulina G/fisiologia , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Fosfatidilserinas/metabolismo , Plasma/metabolismo , Plasma/fisiologia , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/imunologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Receptores de IgG/metabolismo
17.
J Immunol ; 189(5): 2423-31, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22815288

RESUMO

Gram-positive bacteria are an important public health problem, but it is unclear how they cause systemic inflammation in sepsis. Our previous work showed that peptidoglycan (PGN) induced proinflammatory cytokines in human cells by binding to an unknown extracellular receptor, followed by phagocytosis leading to the generation of NOD ligands. In this study, we used flow cytometry to identify host factors that supported PGN binding to immune cells. PGN binding required plasma, and plasma from all tested healthy donors contained IgG recognizing PGN. Plasma depleted of IgG or of anti-PGN Abs did not support PGN binding or PGN-triggered cytokine production. Adding back intact but not F(ab')2 IgG restored binding and cytokine production. Transfection of HEK293 cells with FcγRIIA enabled PGN binding and phagocytosis. These data establish a key role for anti-PGN IgG and FcγRs in supporting inflammation to a major structural element of Gram-positive bacteria and suggest that anti-PGN IgG contributes to human pathology in Gram-positive sepsis.


Assuntos
Anticorpos Antibacterianos/fisiologia , Mediadores da Inflamação/fisiologia , Peptidoglicano/imunologia , Receptores de IgG/fisiologia , Sepse/imunologia , Sepse/microbiologia , Bacillus anthracis/imunologia , Sítios de Ligação/imunologia , Células HEK293 , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Monócitos/imunologia , Monócitos/microbiologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Neutrófilos/patologia , Peptidoglicano/metabolismo , Sepse/patologia , Staphylococcus aureus/imunologia
18.
J Immunol ; 186(7): 3841-5, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357534

RESUMO

The cell wall of bacteria induces proinflammatory cytokines in monocytes and neutrophils in human blood. The nature of the stimulating component of bacterial cell walls is not well understood. We have previously shown polymeric peptidoglycan (PGN) has this activity, and the cytokine response requires PGN internalization and trafficking to lysosomes. In this study, we demonstrate that peptidoglycan monomers such as muramyl dipeptide and soluble peptidoglycan fail to induce robust cytokine production in immune cells, although they activate the nucleotide-binding oligomerization domain proteins in transfected cell models. We further show that lysosomal extracts from immune cells degrade intact peptidoglycan into simpler products and that the lysosomal digestion products activate the nucleotide-binding oligomerization domain proteins. We conclude that naive innate immune cells recognize PGN in its polymeric form rather than monomers such as muramyl dipeptide and require PGN lysosomal hydrolysis to respond. These findings offer new opportunities in the treatment of sepsis, especially sepsis arising from Gram-positive organisms.


Assuntos
Imunidade Inata , Monócitos/imunologia , Monócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptidoglicano/química , Peptidoglicano/imunologia , Acetilmuramil-Alanil-Isoglutamina/química , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Bacillus anthracis/imunologia , Células HEK293 , Humanos , Hidrólise , Líquido Intracelular/imunologia , Líquido Intracelular/metabolismo , Líquido Intracelular/microbiologia , Lisossomos/imunologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Monócitos/microbiologia , Neutrófilos/microbiologia , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/biossíntese , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo , Polímeros/química , Polímeros/metabolismo , Transporte Proteico/imunologia
19.
Sci Signal ; 3(122): ra38, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20484116

RESUMO

The activation and fusion of macrophages and of osteoclasts require the adaptor molecule DNAX-activating protein of 12 kD (DAP12), which contains immunoreceptor tyrosine-based activation motifs (ITAMs). TREM2 (triggering receptor expressed on myeloid cells-2) is the main DAP12-associated receptor in osteoclasts and, similar to DAP12 deficiency, loss of TREM2 in humans leads to Nasu-Hakola disease, which is characterized by bone cysts and dementia. Furthermore, in vitro experiments have shown that deficiency in DAP12 or TREM2 leads to impaired osteoclast development and the formation of mononuclear osteoclasts. Here, we demonstrate that the ligation of TREM2 activated phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase 1 (ERK1) and ERK2, and the guanine nucleotide exchange factor Vav3; induced the mobilization of intracellular calcium (Ca(2+)) and the reorganization of actin; and prevented apoptosis. The signaling adaptor molecule DAP10 played a key role in the TREM2- and DAP12-dependent recruitment of PI3K to the signaling complex. Src homology 2 (SH2) domain-containing inositol phosphatase-1 (SHIP1) inhibited TREM2- and DAP12-induced signaling by binding to DAP12 in an SH2 domain-dependent manner and preventing the recruitment of PI3K to DAP12. These results demonstrate a previously uncharacterized interaction of SHIP1 with DAP12 that functionally limits TREM2- and DAP12-dependent signaling and identify a mechanism through which SHIP1 regulates key ITAM-containing receptors by directly blocking the binding and activation of PI3K.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Glicoproteínas de Membrana/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Receptores Imunológicos/fisiologia , Animais , Divisão Celular/fisiologia , Linhagem Celular , Ativação Enzimática , Inositol Polifosfato 5-Fosfatases , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Transdução de Sinais , Domínios de Homologia de src
20.
Blood ; 116(3): 485-94, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20299514

RESUMO

In inflamed venules, neutrophils rolling on E-selectin induce integrin alpha(L)beta(2)-dependent slow rolling on intercellular adhesion molecule-1 by activating Src family kinases (SFKs), DAP12 and Fc receptor-gamma (FcRgamma), spleen tyrosine kinase (Syk), and p38. E-selectin signaling cooperates with chemokine signaling to recruit neutrophils into tissues. Previous studies identified P-selectin glycoprotein ligand-1 (PSGL-1) as the essential E-selectin ligand and Fgr as the only SFK that initiate signaling to slow rolling. In contrast, we found that E-selectin engagement of PSGL-1 or CD44 triggered slow rolling through a common, lipid raft-dependent pathway that used the SFKs Hck and Lyn as well as Fgr. We identified the Tec kinase Bruton tyrosine kinase as a key signaling intermediate between Syk and p38. E-selectin engagement of PSGL-1 was dependent on its cytoplasmic domain to activate SFKs and slow rolling. Although recruiting phosphoinositide-3-kinase to the PSGL-1 cytoplasmic domain was reported to activate integrins, E-selectin-mediated slow rolling did not require phosphoinositide-3-kinase. Studies in mice confirmed the physiologic significance of these events for neutrophil slow rolling and recruitment during inflammation. Thus, E-selectin triggers common signals through distinct neutrophil glycoproteins to induce alpha(L)beta(2)-dependent slow rolling.


Assuntos
Selectina E/fisiologia , Receptores de Hialuronatos/fisiologia , Migração e Rolagem de Leucócitos/fisiologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Glicoproteínas de Membrana/fisiologia , Tirosina Quinase da Agamaglobulinemia , Animais , Humanos , Receptores de Hialuronatos/genética , Técnicas In Vitro , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Microdomínios da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Neutrófilos/fisiologia , Selectina-P/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-hck/fisiologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Quinases da Família src/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...