Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Brief Bioinform ; 16(5): 865-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25614388

RESUMO

Transport systems comprise roughly 10% of all proteins in a cell, playing critical roles in many processes. Improving and expanding their classification is an important goal that can affect studies ranging from comparative genomics to potential drug target searches. It is not surprising that different classification systems for transport proteins have arisen, be it within a specialized database, focused on this functional class of proteins, or as part of a broader classification system for all proteins. Two such databases are the Transporter Classification Database (TCDB) and the Protein family (Pfam) database. As part of a long-term endeavor to improve consistency between the two classification systems, we have compared transporter annotations in the two databases to understand the rationale for differences and to improve both systems. Differences sometimes reflect the fact that one database has a particular transporter family while the other does not. Differing family definitions and hierarchical organizations were reconciled, resulting in recognition of 69 Pfam 'Domains of Unknown Function', which proved to be transport protein families to be renamed using TCDB annotations. Of over 400 potential new Pfam families identified from TCDB, 10% have already been added to Pfam, and TCDB has created 60 new entries based on Pfam data. This work, for the first time, reveals the benefits of comprehensive database comparisons and explains the differences between Pfam and TCDB.


Assuntos
Bases de Dados de Proteínas , Proteínas/química
2.
Protein Sci ; 23(10): 1380-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25044324

RESUMO

Crystal structures of three members (BACOVA_00364 from Bacteroides ovatus, BACUNI_03039 from Bacteroides uniformis and BACEGG_00036 from Bacteroides eggerthii) of the Pfam domain of unknown function (DUF4488) were determined to 1.95, 1.66, and 1.81 Å resolutions, respectively. The protein structures adopt an eight-stranded, calycin-like, ß-barrel fold and bind an endogenous unknown ligand at one end of the ß-barrel. The amino acids interacting with the ligand are not conserved in any other protein of known structure with this particular fold. The size and chemical environment of the bound ligand suggest binding or transport of a small polar molecule(s) as a potential function for these proteins. These are the first structural representatives of a newly defined PF14869 (DUF4488) Pfam family.


Assuntos
Proteínas de Bactérias/química , Bacteroides/metabolismo , Metabolismo dos Carboidratos , Bacteroides/química , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência
3.
BMC Bioinformatics ; 14: 341, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24274019

RESUMO

BACKGROUND: A novel highly conserved protein domain, DUF162 [Pfam: PF02589], can be mapped to two proteins: LutB and LutC. Both proteins are encoded by a highly conserved LutABC operon, which has been implicated in lactate utilization in bacteria. Based on our analysis of its sequence, structure, and recent experimental evidence reported by other groups, we hereby redefine DUF162 as the LUD domain family. RESULTS: JCSG solved the first crystal structure [PDB:2G40] from the LUD domain family: LutC protein, encoded by ORF DR_1909, of Deinococcus radiodurans. LutC shares features with domains in the functionally diverse ISOCOT superfamily. We have observed that the LUD domain has an increased abundance in the human gut microbiome. CONCLUSIONS: We propose a model for the substrate and cofactor binding and regulation in LUD domain. The significance of LUD-containing proteins in the human gut microbiome, and the implication of lactate metabolism in the radiation-resistance of Deinococcus radiodurans are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/química , Deinococcus/metabolismo , Ácido Láctico/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Deinococcus/genética , Humanos , Microbiota/efeitos da radiação , Dados de Sequência Molecular , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...