Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1020151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875650

RESUMO

Near-infrared spectroscopy (NIRS) can measure tissue blood content and oxygenation; however, its use for adult neuromonitoring is challenging due to significant contamination from their thick extracerebral layers (ECL; primarily scalp and skull). This report presents a fast method for accurate estimation of adult cerebral blood content and oxygenation from hyperspectral time resolved NIRS (trNIRS) data. A two-phase fitting method, based on a two-layer head model (ECL and brain), was developed. Phase 1 uses spectral constraints to accurately estimate the baseline blood content and oxygenation in both layers, which are then used by Phase 2 to correct for the ECL contamination of the late-arriving photons. The method was validated with in silico data from Monte-Carlo simulations of hyperspectral trNIRS in a realistic model of the adult head obtained from a high-resolution MRI. Phase 1 recovered cerebral blood oxygenation and total hemoglobin with an accuracy of 2.7 ± 2.5 and 2.8 ± 1.8%, respectively, with unknown ECL thickness, and 1.5 ± 1.4 and 1.7 ± 1.1% when the ECL thickness was known. Phase 2 recovered these parameters with an accuracy of 1.5 ± 1.5 and 3.1 ± 0.9%, respectively. Future work will include further validation in tissue-mimicking phantoms with various top layer thicknesses and in a pig model of the adult head before human applications.

2.
Biomed Opt Express ; 12(10): 6442-6460, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34745748

RESUMO

Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches. Further, we illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the device to quantify absorption changes in deeper (>1 cm) tissue layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...