Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(2): eaay8361, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31950087

RESUMO

Carbon-based frameworks composed of sp3 bonding represent a class of extremely lightweight strong materials, but only diamond and a handful of other compounds exist despite numerous predictions. Thus, there remains a large gap between the number of plausible structures predicted and those synthesized. We used a chemical design principle based on boron substitution to predict and synthesize a three-dimensional carbon-boron framework in a host/guest clathrate structure. The clathrate, with composition 2Sr@B6C6, exhibits the cubic bipartite sodalite structure (type VII clathrate) composed of sp3-bonded truncated octahedral C12B12 host cages that trap Sr2+ guest cations. The clathrate not only maintains the robust nature of diamond-like sp3 bonding but also offers potential for a broad range of compounds with tunable properties through substitution of guest atoms within the cages.

2.
Nature ; 562(7725): 48-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283111

Assuntos
Física , Polímeros
3.
Phys Rev Lett ; 95(3): 037601, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16090770

RESUMO

We find an unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition sequence induced by pressure, and a morphotropic phase boundary in a pure compound using first-principles calculations. Huge dielectric and piezoelectric coupling constants occur in the transition regions, comparable to those observed in the new complex single-crystal solid-solution piezoelectrics such as Pb(Mg(1/3)Nb(2/3))O3-PbTiO3, which are expected to revolutionize electromechanical applications. Our results show that morphotropic phase boundaries and giant piezoelectric effects do not require intrinsic disorder, and open the possibility of studying this effect in simple systems.

4.
Proc Natl Acad Sci U S A ; 102(28): 9751-3, 2005 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-15994226

RESUMO

High-pressure experiments and theoretical calculations demonstrate that an iron-rich ferromagnesian silicate phase can be synthesized at the pressure-temperature conditions near the core-mantle boundary. The iron-rich phase is up to 20% denser than any known silicate at the core-mantle boundary. The high mean atomic number of the silicate greatly reduces the seismic velocity and provides an explanation to the low-velocity and ultra-low-velocity zones. Formation of this previously undescribed phase from reaction between the silicate mantle and the iron core may be responsible for the unusual geophysical and geochemical signatures observed at the base of the lower mantle.

5.
Proc Natl Acad Sci U S A ; 102(9): 3198-201, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15728352

RESUMO

Detailed study of the equation of state, elasticity, and hardness of selected superconducting transition-metal nitrides reveals interesting correlations among their physical properties. Both the bulk modulus and Vickers hardness are found to decrease with increasing zero-pressure volume in NbN, HfN, and ZrN. The computed elastic constants from first principles satisfy c11 > c12 > c44 for NbN, but c11 > c44 > c12 for HfN and ZrN, which are in good agreement with the neutron scattering data. The cubic delta-NbN superconducting phase possesses a bulk modulus of 348 GPa, comparable to that of cubic boron nitride, and a Vickers hardness of 20 GPa, which is close to sapphire. Theoretical calculations for NbN show that all elastic moduli increase monotonically with increasing pressure. These results suggest technological applications of such materials in extreme environments.

6.
Proc Natl Acad Sci U S A ; 101(1): 33-6, 2004 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-14694193

RESUMO

The magnetic state of hexagonal close-packed iron has been the subject of debate for more than three decades. Although Mössbauer measurements find no evidence of the hyperfine splitting that can signal the presence of magnetic moments, density functional theory predicts an antiferromagnetic (afm) ground state. This discrepancy between theory and experiment is now particularly important because of recent experimental findings of anomalous splitting in the Raman spectra and the presence of superconductivity in hexagonal close-packed iron, which may be caused by magnetic correlations. Here, we report results from first principles calculations on the previously predicted theoretical collinear afm ground state that strongly support the presence of afm correlations in hexagonal close-packed iron. We show that anomalous splitting of the Raman mode can be explained by spin-phonon interactions. Moreover, we find that the calculated hyperfine field is very weak and would lead to hyperfine splitting below the resolution of Mössbauer experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...