Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 6(2): 1085-1092, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36937111

RESUMO

Recently, the development of durable anion-exchange membrane fuel cells (AEMFCs) has increased in intensity due to their potential to use low-cost, sustainable components. However, the decomposition of the quaternary ammonium (QA) cationic groups in the anion-exchange membranes (AEMs) during cell operation is still a major challenge. Many different QA types and functionalized polymers have been proposed that achieve high AEM stabilities in strongly alkaline aqueous solutions. We previously developed an ex situ technique to measure AEM alkaline stabilities in an environment that simulates the low-hydration conditions in an operating AEMFC. However, this method required the AEMs to be soluble in DMSO solvent, so decomposition could be monitored using 1H nuclear magnetic resonance (NMR). We now report the extension of this ex situ protocol to spectroscopically measure the alkaline stability of insoluble AEMs. The stability ofradiation-grafted (RG) poly(ethylene-co-tetrafluoroethylene)-(ETFE)-based poly(vinylbenzyltrimethylammonium) (ETFE-TMA) and poly(vinylbenzyltriethylammonium) (ETFE-TEA) AEMs were studied using Raman spectroscopy alongside changes in their true OH- conductivities and ion-exchange capacities (IEC). A crosslinked polymer made from poly(styrene-co-vinylbenzyl chloride) random copolymer and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) was also studied. The results are consistent with our previous studies based on QA-type model small molecules and soluble poly(2,6-dimethylphenylene oxide) (PPO) polymers. Our work presents a reliable ex situ technique to measure the true alkaline stability of AEMs for fuel cells and water electrolyzers.

2.
Phys Rev Lett ; 130(3): 030602, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36763391

RESUMO

Entangling gates are an essential component of quantum computers. However, generating high-fidelity gates, in a scalable manner, remains a major challenge in all quantum information processing platforms. Accordingly, improving the fidelity and robustness of these gates has been a research focus in recent years. In trapped ions quantum computers, entangling gates are performed by driving the normal modes of motion of the ion chain, generating a spin-dependent force. Even though there has been significant progress in increasing the robustness and modularity of these gates, they are still sensitive to noise in the intensity of the driving field. Here we supplement the conventional spin-dependent displacement with spin-dependent squeezing, which creates a new interaction, that enables a gate that is robust to deviations in the amplitude of the driving field. We solve the general Hamiltonian and engineer its spectrum analytically. We also endow our gate with other, more conventional, robustness properties, making it resilient to many practical sources of noise and inaccuracies.

3.
J Phys Chem Lett ; 13(43): 10216-10221, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36288549

RESUMO

Solvent molecules are known to affect chemical reactions, especially if they interact with one or more of the reactants or catalysts. In ion microsolvation, i.e., solvent molecules in the first solvation sphere, strong electronic interactions are created, leading to significant changes in charge distribution and consequently on their nucleophilicity/electrophilicity and acidity/basicity. Despite a long history of research in the field, fundamental issues regarding the effects of ion microsolvation are still open, especially in the condensed phase. Using reactions between hydroxide and relatively stable quaternary ammonium salts as an example, we show that water microsolvation can change hydroxide's chemoselectivity by differently affecting its basicity and nucleophilicity. In this example, the hydroxide reactivity as a nucleophile is less affected by water microsolvation than its reactivity as a base. These disparities are discussed by calculating and comparing oxidation potentials and polarizabilities of the different water-hydroxide clusters.


Assuntos
Hidróxidos , Água , Água/química , Solventes/química
4.
Cell ; 179(1): 219-235.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522890

RESUMO

Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.


Assuntos
Heterogeneidade Genética/efeitos da radiação , Melanoma/genética , Melanoma/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Raios Ultravioleta/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos do Interstício Tumoral , Melanoma/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Mutação/efeitos da radiação , Filogenia , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
5.
Nat Commun ; 10(1): 2306, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127108

RESUMO

Solid polymer electrolyte electrochemical energy conversion devices that operate under highly alkaline conditions afford faster reaction kinetics and the deployment of inexpensive electrocatalysts compared with their acidic counterparts. The hydroxide anion exchange polymer is a key component of any solid polymer electrolyte device that operates under alkaline conditions. However, durable hydroxide-conducting polymer electrolytes in highly caustic media have proved elusive, because polymers bearing cations are inherently unstable under highly caustic conditions. Here we report a systematic investigation of novel arylimidazolium and bis-arylimidazolium compounds that lead to the rationale design of robust, sterically protected poly(arylimidazolium) hydroxide anion exchange polymers that possess a combination of high ion-exchange capacity and exceptional stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...