Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 364: 246-260, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879441

RESUMO

Sustained drug-release systems prolong the retention of therapeutic drugs within target tissues to alleviate the need for repeated drug administration. Two major caveats of the current systems are that the release rate and the timing cannot be predicted or fine-tuned because they rely on uncontrolled environmental conditions and that the system must be redesigned for each drug and treatment regime because the drug is bound via interactions that are specific to its structure and composition. We present a controlled and universal sustained drug-release system, which comprises minute spherical particles in which a therapeutic protein is affinity-bound to alginate sulfate (AlgS) through one or more short heparin-binding peptide (HBP) sequence repeats. Employing post-myocardial infarction (MI) heart remodeling as a case study, we show that the release of C9-a matrix metalloproteinase-9 (MMP-9) inhibitor protein that we easily bound to AlgS by adding one, two, or three HBP repeats to its sequence-can be directly controlled by modifying the number of HBP repeats. In an in vivo study, we directly injected AlgS particles, which were bound to C9 through three HBP repeats, into the left ventricular myocardium of mice following MI. We found that the particles substantially reduced post-MI remodeling, attesting to the sustained, local release of the drug within the tissue. As the number of HBP repeats controls the rate of drug release from the AlgS particles, and since C9 can be easily replaced with almost any protein, our tunable sustained-release system can readily accommodate a wide range of protein-based treatments.


Assuntos
Metaloproteinase 9 da Matriz , Infarto do Miocárdio , Camundongos , Animais , Metaloproteinase 9 da Matriz/metabolismo , Preparações de Ação Retardada/uso terapêutico , Remodelação Ventricular , Função Ventricular Esquerda/fisiologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo
2.
Biol Res ; 56(1): 34, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37349842

RESUMO

Dilated cardiomyopathy (DCM) is a primary myocardial disease, leading to heart failure and excessive risk of sudden cardiac death with rather poorly understood pathophysiology. In 2015, Parvari's group identified a recessive mutation in the autophagy regulator, PLEKHM2 gene, in a family with severe recessive DCM and left ventricular non-compaction (LVNC). Fibroblasts isolated from these patients exhibited abnormal subcellular distribution of endosomes, Golgi apparatus, lysosomes and had impaired autophagy flux. To better understand the effect of mutated PLEKHM2 on cardiac tissue, we generated and characterized induced pluripotent stem cells-derived cardiomyocytes (iPSC-CMs) from two patients and a healthy control from the same family. The patient iPSC-CMs showed low expression levels of genes encoding for contractile functional proteins (α and ß-myosin heavy chains and 2v and 2a-myosin light chains), structural proteins integral to heart contraction (Troponin C, T and I) and proteins participating in Ca2+ pumping action (SERCA2 and Calsequestrin 2) compared to their levels in control iPSC-derived CMs. Furthermore, the sarcomeres of the patient iPSC-CMs were less oriented and aligned compared to control cells and generated slowly beating foci with lower intracellular calcium amplitude and abnormal calcium transient kinetics, measured by IonOptix system and MuscleMotion software. Autophagy in patient's iPSC-CMs was impaired as determined from a decrease in the accumulation of autophagosomes in response to chloroquine and rapamycin treatment, compared to control iPSC-CMs. Impairment in autophagy together with the deficiency in the expression of NKX2.5, MHC, MLC, Troponins and CASQ2 genes, which are related to contraction-relaxation coupling and intracellular Ca2+ signaling, may contribute to the defective function of the patient CMs and possibly affect cell maturation and cardiac failure with time.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Cálcio/metabolismo , Cálcio/farmacologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Diferenciação Celular , Mutação , Miócitos Cardíacos/metabolismo
3.
Int J Bioprint ; 9(2): 670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065655

RESUMO

In recent years, extrusion-based three-dimensional (3D) bioprinting is employed for engineering cardiac patches (CP) due to its ability to assemble complex structures from hydrogel-based bioinks. However, the cell viability in such CPs is low due to shear forces applied on the cells in the bioink, inducing cellular apoptosis. Herein, we investigated whether the incorporation of extracellular vesicles (EVs) in the bioink, engineered to continually deliver the cell survival factor miR-199a-3p would increase the viability within the CP. EVs from THP-1-derived activated macrophages (MΦ) were isolated and characterized by nanoparticle tracking analysis (NTA), cryogenic electron microscopy (cryo-TEM), and Western blot analysis. MiR-199a-3p mimic was loaded into EVs by electroporation after optimization of applied voltage and pulses. Functionality of the engineered EVs was assessed in neonatal rat cardiomyocyte (NRCM) monolayers using immunostaining for the proliferation markers ki67 and Aurora B kinase. To examine the effect of engineered EVs on 3D-bioprinted CP viability, the EVs were added to the bioink, consisting of alginate-RGD, gelatin, and NRCM. Metabolic activity and expression levels of activated-caspase 3 for apoptosis of the 3D-bioprinted CP were evaluated after 5 days. Electroporation (850 V with 5 pulses) was found to be optimal for miR loading; miR-199a-3p levels in EVs increased fivefold compared to simple incubation, with a loading efficiency of 21.0%. EV size and integrity were maintained under these conditions. Cellular uptake of engineered EVs by NRCM was validated, as 58% of cTnT+ cells internalized EVs after 24 h. The engineered EVs induced CM proliferation, increasing the ratio of cell-cycle re-entry of cTnT+ cells by 30% (Ki67) and midbodies+ cell ratio by twofold (Aurora B) compared with the controls. The inclusion of engineered EVs in bioink yielded CP with threefold greater cell viability compared to bioink with no EVs. The prolonged effect of EVs was evident as the CP exhibited elevated metabolic activities after 5 days, with less apoptotic cells compared to CP with no EVs. The addition of miR-199a-3p-loaded EVs to the bioink improved the viability of 3D-printed CP and is expected to contribute to their integration in vivo.

4.
Eur J Pharm Biopharm ; 184: 83-91, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693545

RESUMO

Nanomedicine offers great potential for the treatment of cardiovascular disease and particulate systems have the capacity to markedly improve bioavailability of therapeutics. The delivery of pro-angiogenic hepatocyte growth factor (HGF) and pro-survival and pro-myogenic insulin-like growth factor (IGF-1) encapsulated in Alginate-Sulfate nanoparticles (AlgS-NP) might improve left ventricular (LV) functional recovery after myocardial infarction (MI). In a porcine ischemia-reperfusion model, MI is induced by 75 min balloon occlusion of the mid-left anterior descending coronary artery followed by reperfusion. After 1 week, pigs (n = 12) with marked LV-dysfunction (LV ejection fraction, LVEF < 45%) are randomized to fusion imaging-guided intramyocardial injections of 8 mg AlgS-NP prepared with 200 µg HGF and IGF-1 (HGF/IGF1-NP) or PBS (Control). Intramyocardial injection is safe and pharmacokinetic studies of Cy5-labeled NP confirm superior cardiac retention compared to intracoronary infusion. Seven weeks after intramyocardial-injection of HGF/IGF1-NP, infarct size, measured using magnetic resonance imaging, is significantly smaller than in controls and is associated with increased coronary flow reserve. Importantly, HGF/IGF1-NP-treated pigs show significantly increased LVEF accompanied by improved myocardial remodeling. These findings demonstrate the feasibility and efficacy of using AlgS-NP as a delivery system for growth factors and offer the prospect of innovative treatment for refractory ischemic cardiomyopathy.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Nanopartículas , Animais , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito , Fator de Crescimento Insulin-Like I , Sulfatos , Suínos
5.
Sci Rep ; 12(1): 21863, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529756

RESUMO

After myocardial infarction (MI), the heart's reparative response to the ischemic insult and the related loss of cardiomyocytes involves cardiac fibrosis, in which the damaged tissue is replaced with a fibrous scar. Although the scar is essential to prevent ventricular wall rupture in the infarction zone, it expands over time to remote, non-infarct areas, significantly increasing the extent of fibrosis and markedly altering cardiac structure. Cardiac function in this scenario deteriorates, thereby increasing the probability of heart failure and the risk of death. Recent works have suggested that the matricellular protein periostin, known to be involved in fibrosis, is a candidate therapeutic target for the regulation of MI-induced fibrosis and remodeling. Different strategies for the genetic manipulation of periostin have been proposed previously, yet those works did not properly address the time dependency between periostin activity and cardiac fibrosis. Our study aimed to fill that gap in knowledge and fully elucidate the explicit timing of cellular periostin upregulation in the infarcted heart to enable the safer and more effective post-MI targeting of periostin-producing cells. Surgical MI was performed in C57BL/6J and BALB/c mice by ligation of the left anterior descending coronary artery. Flow cytometry analyses of cells derived from the infarcted hearts and quantitative real-time PCR of the total cellular RNA revealed that periostin expression increased during days 2-7 and peaked on day 7 post-infarct, regardless of mouse strain. The established timeline for cellular periostin expression in the post-MI heart is a significant milestone toward the development of optimal periostin-targeted gene therapy.


Assuntos
Cicatriz , Infarto do Miocárdio , Animais , Camundongos , Cicatriz/patologia , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Remodelação Ventricular/genética
6.
Gels ; 8(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547293

RESUMO

Cardiac tissue engineering has emerged as a promising strategy to treat infarcted cardiac tissues by replacing the injured region with an ex vivo fabricated functional cardiac patch. Nevertheless, integration of the transplanted patch with the host tissue is still a burden, limiting its clinical application. Here, a bi-functional, 3D bio-printed cardiac patch (CP) design is proposed, composed of a cell-laden compartment at its core and an extracellular vesicle (EV)-laden compartment at its shell for better integration of the CP with the host tissue. Alginate-based bioink solutions were developed for each compartment and characterized rheologically, examined for printability and their effect on residing cells or EVs. The resulting 3D bio-printed CP was examined for its mechanical stiffness, showing an elastic modulus between 4-5 kPa at day 1 post-printing, suitable for transplantation. Affinity binding of EVs to alginate sulfate (AlgS) was validated, exhibiting dissociation constant values similar to those of EVs with heparin. The incorporation of AlgS-EVs complexes within the shell bioink sustained EV release from the CP, with 88% cumulative release compared with 92% without AlgS by day 4. AlgS also prolonged the release profile by an additional 2 days, lasting 11 days overall. This CP design comprises great potential at promoting more efficient patch assimilation with the host.

7.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555735

RESUMO

Pleckstrin Homology And RUN Domain Containing M2 (PLEKHM2) [delAG] mutation causes dilated cardiomyopathy with left ventricular non-compaction (DCM-LVNC), resulting in a premature death of PLEKHM2[delAG] individuals due to heart failure. PLEKHM2 is a factor involved in autophagy, a master regulator of cellular homeostasis, decomposing pathogens, proteins and other cellular components. Autophagy is mainly carried out by the lysosome, containing degradation enzymes, and by the autophagosome, which engulfs substances marked for decomposition. PLEKHM2 promotes lysosomal movement toward the cell periphery. Autophagic dysregulation is associated with neurodegenerative diseases' pathogenesis. Thus, modulation of autophagy holds considerable potential as a therapeutic target for such disorders. We hypothesized that PLEKHM2 is involved in neuronal development and function, and that mutated PLEKHM2 (PLEKHM2[delAG]) neurons will present impaired functions. Here, we studied PLEKHM2-related abnormalities in induced pluripotent stem cell (iPSC)-derived motor neurons (iMNs) as a neuronal model. PLEKHM2[delAG] iMN cultures had healthy control-like differentiation potential but exhibited reduced autophagic activity. Electrophysiological measurements revealed that PLEKHM2[delAG] iMN cultures displayed delayed functional maturation and more frequent and unsynchronized activity. This was associated with increased size and a more perinuclear lysosome cellular distribution. Thus, our results suggest that PLEKHM2 is involved in the functional development of neurons through the regulation of autophagic flux.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Autofagia/genética , Autofagossomos/metabolismo , Lisossomos/metabolismo , Neurônios Motores
8.
ACS Biomater Sci Eng ; 8(8): 3526-3541, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838679

RESUMO

Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.


Assuntos
Macrófagos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Macrófagos/metabolismo , Camundongos , Fenótipo
9.
J Control Release ; 341: 431-442, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838607

RESUMO

Achievement of a high dose of drug in the tumor while minimizing its systemic side effects is one of the important features of an improved drug delivery system. Thus, developing responsive carriers for site-specific delivery of chemotherapeutic agents has become a main goal of research efforts. One of the known hallmarks of cancerous tumors is hypoxia, which offers a target for selective drug delivery. The stimuli-sensitive micellar system developed by us, (PEG-azobenzene-PEI-DOPE (PAPD) has proven to be effective in vitro. The proposed construct developed, PAPD, contains an azobenzene group as a hypoxia-sensitive moiety that triggers the shedding of the PEG layer from the nanoparticle surface under conditions of hypoxia to improve cellular uptake. Using microfluidics, we show significantly improved cellular association and penetration under hypoxia in both single cells and in a 3D tumor model. Employing an in vivo model, we demonstrate slower tumor growth that did not induce systemic side effects, including weight loss in an experimental animal model, when compared to the free drug treatment. This complex-in-nature but simple-in-design system for the simultaneous delivery of siRNA to silence the P-glycoprotein and doxorubicin with active tumor targeting and proven therapeutic efficacy represents a universal platform for the delivery of other hydrophobic chemotherapeutic agents and siRNA molecules which can be further modified.


Assuntos
Doxorrubicina , Hipóxia , Animais , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Micelas , RNA Interferente Pequeno/genética
10.
Stem Cell Res ; 53: 102382, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088011

RESUMO

Autophagy serves as a master regulator of cellular homeostasis. Hence, expectedly autophagic dysfunction has been documented in many diseases such as cancer, neurodegeneration and cardiovascular disorders. A novel homozygous mutation in PLEKHM2 gene (mPLEKHM2) resulted in dilated cardiomyopathy with left ventricular noncompaction (DCM-LVNC), probably as result of impaired autophagy due to disruption of lysosomal movement assisted by PLEKHM2. Here we report a generation of three iPSC lines, four clones originated from two patients with homozygous mPLEKHM2 and two from a heterozygote sibling. All generated lines highly expressed pluripotency markers, spontaneously differentiated into three germ layers, retained the mutation after reprogramming and displayed normal karyotypes.


Assuntos
Cardiomiopatia Dilatada , Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Dilatada/genética , Heterozigoto , Humanos , Irmãos
11.
Acta Biomater ; 132: 473-488, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34153511

RESUMO

Cancer is driven by both genetic aberrations in the tumor cells and fundamental changes in the tumor microenvironment (TME). These changes offer potential targets for novel therapeutics, yet lack of in vitro 3D models recapitulating this complex microenvironment impedes such progress. Here, we generated several tumor-stroma scaffolds reflecting the dynamic in vivo breast TME, using a high throughput microfluidic system. Alginate (Alg) or alginate-alginate sulfate (Alg/Alg-S) hydrogels were used as ECM-mimics, enabling the encapsulation and culture of tumor cells, fibroblasts and immune cells (macrophages and T cells, of the innate and adaptive immune systems, respectively). Specifically, Alg/Alg-S was shown capable of capturing and presenting growth factors and cytokines with binding affinity that is comparable to heparin. Viability and cytotoxicity were shown to strongly correlate with the dynamics of cellular milieu, as well as hydrogel type. Using on-chip immunofluorescence, production of reactive oxygen species and apoptosis were imaged and quantitatively analyzed. We then show how macrophages in our microfluidic system were shifted from a proinflammatory to an immunosuppressive phenotype when encapsulated in Alg/Alg-S, reflecting in vivo TME dynamics. LC-MS proteomic profiling of tumor cells sorted from the TME scaffolds revealed upregulation of proteins involved in cell-cell interactions and immunomodulation in Alg/Alg-S scaffolds, correlating with in vivo findings and demonstrating the appropriateness of Alg/Alg-S as an ECM biomimetic. Finally, we show the formation of large tumor-derived vesicles, formed exclusively in Alg/Alg-S scaffolds. Altogether, our system offers a robust platform for quantitative description of the breast TME that successfully recapitulates in vivo patterns. STATEMENT OF SIGNIFICANCE: Cancer progression is driven by profound changes in both tumor cells and surrounding stroma. Here, we present a high throughput microfluidic system for the generation and analysis of dynamic tumor-stroma scaffolds, that mimic the complex in vivo TME cell proportions and compositions, constructing robust in vitro models for the study of the TME. Utilizing Alg/Alg-S as a bioinspired ECM, mimicking heparin's in vivo capabilities of capturing and presenting signaling molecules, we show how Alg/Alg-S induces complex in vivo-like responses in our models. Alg/Alg-S is shown here to promote dynamic protein expression patterns, that can serve as potential therapeutic targets for breast cancer treatment. Formation of large tumor-derived vesicles, observed exclusively in the Alg/Alg-S scaffolds suggests a mechanism for tumor survival.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Biomimética , Feminino , Humanos , Microfluídica , Proteômica
12.
Biofabrication ; 13(3)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33440359

RESUMO

Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology inin vitromodels. Environmental oxygen levels, applied in mostin vitromodels, poorly imitate the oxygen conditions cells experiencein vivo, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy. Though this phenomenon offers a specific target for cancer therapy, appropriatein vitroplatforms are still lacking. Microfluidic models offer advanced spatio-temporal control of physico-chemical parameters. However, most of the systems described to date control a single oxygen level per chip, thus offering limited experimental throughput. Here, we developed a multi-layer microfluidic device coupling the high throughput generation of 3D tumor spheroids with a linear gradient of five oxygen levels, thus enabling multiple conditions and hundreds of replicates on a single chip. We showed how the applied oxygen gradient affects the generation of reactive oxygen species (ROS) and the cytotoxicity of Doxorubicin and Tirapazamine in breast tumor spheroids. Our results aligned with previous reports of increased ROS production under hypoxia and provide new insights on drug cytotoxicity levels that are closer to previously reportedin vivofindings, demonstrating the predictive potential of our system.


Assuntos
Neoplasias da Mama , Microfluídica , Linhagem Celular Tumoral , Doxorrubicina , Feminino , Humanos , Hipóxia , Oxigênio , Esferoides Celulares
13.
Artigo em Inglês | MEDLINE | ID: mdl-32175315

RESUMO

Heart failure (HF) after myocardial infarction (MI) due to blockage of coronary arteries is a major public health issue. MI results in massive loss of cardiac muscle due to ischemia. Unfortunately, the adult mammalian myocardium presents a low regenerative potential, leading to two main responses to injury: fibrotic scar formation and hypertrophic remodeling. To date, complete heart transplantation remains the only clinical option to restore heart function. In the last two decades, tissue engineering has emerged as a promising approach to promote cardiac regeneration. Tissue engineering aims to target processes associated with MI, including cardiomyogenesis, modulation of extracellular matrix (ECM) remodeling, and fibrosis. Tissue engineering dogmas suggest the utilization and combination of two key components: bioactive molecules and biomaterials. This chapter will present current therapeutic applications of biomaterials in cardiac regeneration and the challenges still faced ahead. The following biomaterial-based approaches will be discussed: Nano-carriers for cardiac regeneration-inducing biomolecules; corresponding matrices for their controlled release; injectable hydrogels for cell delivery and cardiac patches. The concept of combining cardiac patches with controlled release matrices will be introduced, presenting a promising strategy to promote endogenous cardiac regeneration.

14.
Sci Rep ; 9(1): 14490, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601830

RESUMO

Deriving cell populations from human embryonic stem cells (hESCs) for cell-based therapy is considered a promising strategy to achieve functional cells, yet its translation to clinical practice depends on achieving fully defined differentiated cells. In this work, we generated a miRNA-responsive lethal mRNA construct that selectively induces rapid apoptosis in hESCs by expressing a mutant (S184del) Bax variant. Insertion of miR-499 target sites in the construct enabled to enrich hESC-derived cardiomyocytes (CMs) in culture. A deterministic non-linear model was developed and validated with experimental data, to predict the outcome for each treatment cycle and the number of treatment cycle repetitions required to achieve completely purified cTNT-positive cells. The enriched hESC-CMs displayed physiological sarcomere orientation, functional calcium handling and after transplantation into SCID-NOD mice did not form teratomas. The modular miRNA responsive lethal mRNA construct could be employed in additional directed differentiation protocols, by adjusting the miRNA to the specific cells of choice.


Assuntos
Diferenciação Celular/genética , MicroRNAs/genética , Organogênese/genética , Proteína X Associada a bcl-2/genética , Animais , Apoptose/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais/genética , Vetores Genéticos/genética , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , RNA Mensageiro/genética
15.
Mol Ther Nucleic Acids ; 16: 378-390, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31003172

RESUMO

Successful gene therapy requires the development of suitable carriers for the selective and efficient delivery of genes to specific target cells, with minimal toxicity. In this work, we present a non-viral vector for gene delivery composed of biocompatible materials, CaCl2, plasmid DNA and the semi-synthetic anionic biopolymer alginate sulfate (AlgS), which spontaneously co-assembled to form nanoparticles (NPs). The NPs were characterized with a slightly anionic surface charge (Zeta potential [ζ] = -14 mV), an average size of 270 nm, and their suspension was stable for several days with no aggregation. X-ray photoelectron spectroscopy (XPS) validated their ternary composition, and it elucidated the molecular interactions among Ca2+, the plasmid DNA, and the AlgS. Efficient cellular uptake (>80%), associated with potent GFP gene expression (22%-35%), was observed across multiple cell types: primary rat neonatal cardiac fibroblasts, human breast cancer cell line, and human hepatocellular carcinoma cells. The uptake mechanism of the NPs was studied using imaging flow cytometry and shown to be via active, clathrin-mediated endocytosis, as chemical inhibition of this pathway significantly reduced EGFP expression. The NPs were cytocompatible and did not activate the T lymphocytes in human peripheral blood mononuclear cells. Proof of concept for the efficacy of these NPs as a carrier in cancer gene therapy was demonstrated for Diphtheria Toxin Fragment A (DT-A), resulting in abrogation of protein synthesis and cell death in the human breast cancer cell line. Collectively, our results show that the developed AlgS-Ca2+-plasmid DNA (pDNA) NPs may be used as an effective non-viral carrier for pDNA.

16.
Biomaterials ; 205: 11-22, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30901634

RESUMO

Implementing ovarian tissue engineering for the maturation of primordial follicles, the most abundant follicle population in the ovary, holds great potential for women fertility preservation. Here, we evaluated whether macroporous alginate scaffolds with affinity-bound bone morphogenetic protein-4 (BMP-4) could mimic the ovary microenvironment and support the culture and growth of primordial follicles seeded with supporting ovarian cells. Porcine primordial follicles developed in the alginate scaffolds up to the pre-antral stage within 21 days. Affinity-bound BMP-4 significantly contributed to follicular maturation, as evident by the 5-fold increase in the number of developing follicles and enhanced estradiol secretion in these cultures compared to when BMP-4 was added to cultures with no affinity binding. After 21 days in culture, an increase in GDF-9/AMH gene expression, which is correlated with follicular development, was statistically significant when BMP-4 was affinity bound, compared to all other scaffold groups. When developed in-vivo, after xeno-transplantation of the follicle devices supplemented with additional angiogenic factors, the follicles reached antral size and secreted hormones at levels leading to restoration of ovarian function in ovariectomized severe combined immunodeficiency (SCID) mice. Altogether, our results provide first affirmation for the applicability of macroporous alginate scaffolds as a suitable platform for promoting follicle maturation in-vitro and in-vivo, and lay the foundations for the advantageous use of affinity binding presentation of growth factors to cultured follicles.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Ovário/efeitos dos fármacos , Alicerces Teciduais/química , Alginatos/farmacologia , Animais , Proteína Morfogenética Óssea 4/farmacologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/sangue , Humanos , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Porosidade , Sulfatos/farmacologia , Suínos , Sobrevivência de Tecidos/efeitos dos fármacos
17.
J Orthop Translat ; 16: 40-52, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30723680

RESUMO

BACKGROUND: Despite intensive research, regeneration of articular cartilage largely remains an unresolved medical concern as the clinically available modalities still suffer from long-term inconsistent data, relatively high failure rates and high prices of more promising approaches, such as cell therapy. In the present study, we aimed to evaluate the feasibility and long-term efficacy of a bilayered injectable acellular affinity-binding alginate hydrogel in a large animal model of osteochondral defects. METHODS: The affinity-binding alginate hydrogel is designed for presentation and slow release of chondrogenic and osteogenic inducers (transforming growth factor-ß1 and bone morphogenic protein 4, respectively) in two distinct and separate hydrogel layers. The hydrogel was injected into the osteochondral defects created in the femoral medial condyle in mini-pigs, and various outcomes were evaluated after 6 months. RESULTS: Macroscopical and histological assessment of the defects treated with growth factor affinity-bound hydrogel showed effective reconstruction of articular cartilage layer, with major features of hyaline tissue, such as a glossy surface and cellular organisation, associated with marked deposition of proteoglycans and type II collagen. Microcomputed tomography showed incomplete bone formation in both treatment groups, which was nevertheless augmented by the presence of affinity-bound growth factors. Importantly, the physical nature of the applied hydrogel ensured its shear resistance, seamless integration and topographical matching to the surroundings and opposing articulating surface. CONCLUSIONS: The treatment with acellular injectable growth factor-loaded affinity-binding alginate hydrogel resulted in effective tissue restoration with major hallmarks of hyaline cartilage, shown in large animal model after 6-month follow-up. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This proof-of-concept study in a clinically relevant large animal model showed promising potential of an injectable acellular growth factor-loaded affinity-binding alginate hydrogel for effective repair and regeneration of articular hyaline cartilage, representing a strong candidate for future clinical development.

18.
Toxicol Appl Pharmacol ; 363: 72-78, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30468816

RESUMO

INTRODUCTION: Acetaminophen (APAP) intoxication is a major cause of acute liver failure. Alginate, an anionic polysaccharide, was previously shown as a macroporous scaffold, to reduce liver inflammation and sustain hepatic synthetic function, when implanted on liver remnant after extended partial hepatectomy. In the recent study we wanted to examine in a model of APAP intoxication the potential of a specially formulated alginate solution to prevent APAP toxicity. METHODS: Three alginate solutions from low (30-50 kDa, VLVG), medium (100 kDa, LVG54) and high (150 kDa, LVG150) molecular weights were examined. Mice were orally administered with the alginate solution before, with and after APAP administration and were compared to control mice which received vehicle only. All mice were euthanized 24 h after APAP administration. Liver enzyme, blood APAP, IL-6 and liver histology including Ki-67 proliferation, IgG necrosis and nitrotyrosine staining were studied. RESULTS: VLVG- treated mice presented low ALT levels while 20-40 fold increase was demonstrated in control mice. The effect of LVG solutions was marginal. Accordingly, liver histology was normal with no hepatocytes proliferation in the VLVG group while massive centrilobular necrosis, increased nitrotyrosine staining and high proliferation appeared in livers of control mice. APAP blood levels were comparable in the two groups. Treatment with VLVG was associated with prevention of increase of IL-6 serum levels. CONCLUSION: VLVG, a novel alginate solution, alleviated the liver toxicity and inhibited oncotic necrosis and related immune-mediated damage. VLVG may serve as a novel hepato-protector and prevent drug induced liver injury.


Assuntos
Acetaminofen/toxicidade , Alginatos/uso terapêutico , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Substâncias Protetoras/uso terapêutico , Acetaminofen/sangue , Administração Oral , Alanina Transaminase/sangue , Alginatos/farmacologia , Analgésicos não Narcóticos/sangue , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Animais de Doenças , Humanos , Interleucina-6/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/sangue , Necrose/induzido quimicamente , Necrose/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia
19.
Nano Lett ; 18(11): 7314-7322, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30380888

RESUMO

Nano- and microscale topographical cues have become recognized as major regulators of cell growth, migration, and phenotype. In tissue engineering, the complex and anisotropic architecture of culture platforms is aimed to imitate the high degree of spatial organization of the extracellular matrix and basement membrane components. Here, we developed a method of creating a novel, magnetically aligned, three-dimensional (3D) tissue culture matrix with three distinct classes of anisotropy-surface topography, microstructure, and physical properties. Alginate-stabilized magnetic nanoparticles (MNPs) were added to a cross-linked alginate solution, and an external magnetic field of about 2400 G was applied during freezing to form the aligned macroporous scaffold structure. The resultant scaffold exhibited anisotropic topographic features on the submicron scale, the directionality of the pore shape, and increased scaffold stiffness in the direction of magnetic alignment. These scaffold features were modulated by an alteration in the impregnated MNP size and concentration, as quantified by electron microscopy, advanced image processing analyses, and rheological methods. Mouse myoblasts (C2C12) cultured on the magnetically aligned scaffolds, demonstrated co-oriented morphology in the direction of the magnetic alignment. In summary, magnetic alignment introduces several degrees of anisotropy in the scaffold structure, providing diverse mechanical cues that can affect seeded cells and further tissue development. Multiscale anisotropy together with the capability of the MNP-containing alginate scaffolds to undergo reversible shape deformation in an oscillating magnetic field creates interesting opportunities for multifarious stimulation of cells and functional tissue development.

20.
Nano Lett ; 18(9): 5885-5891, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30141949

RESUMO

MicroRNA-based therapy that targets cardiac macrophages holds great potential for treatment of myocardial infarction (MI). Here, we explored whether boosting the miRNA-21 transcript level in macrophage-enriched areas of the infarcted heart could switch their phenotype from pro-inflammatory to reparative, thus promoting resolution of inflammation and improving cardiac healing. We employed laser capture microdissection (LCM) to spatially monitor the response to this treatment in the macrophage-enriched zones. MiRNA-21 mimic was delivered to cardiac macrophages post MI by nanoparticles (NPs), spontaneously assembled due to the complexation of hyaluronan-sulfate with the nucleic acid mediated by calcium ion bridges, yielding slightly anionic NPs with a mean diameter of 130 nm. Following intravenous administration, the miRNA-21 NPs were targeted to cardiac macrophages at the infarct zone, elicited their phenotype switch from pro-inflammatory to reparative, promoted angiogenesis, and reduced hypertrophy, fibrosis and cell apoptosis in the remote myocardium. Our work thus presents a new therapeutic strategy to manipulate macrophage phenotype using nanoparticle delivery of miRNA-21 with a potential for use to attenuate post-MI remodeling and heart failure.


Assuntos
Ácido Hialurônico/análogos & derivados , MicroRNAs/administração & dosagem , Infarto do Miocárdio/terapia , Nanopartículas/química , Animais , Feminino , Técnicas de Transferência de Genes , Terapia Genética , Microdissecção e Captura a Laser , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/uso terapêutico , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...