Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(14): 5681-5688, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819950

RESUMO

Overcoming the challenges of patterning luminescent materials will unlock additive and more sustainable paths for the manufacturing of next-generation on-chip photonic devices. Electrohydrodynamic (EHD) inkjet printing is a promising method for deterministically placing emitters on these photonic devices. However, the use of this technique to pattern luminescent lead halide perovskite nanocrystals (NCs), notable for their defect tolerance and impressive optical and spin coherence properties, for integration with optoelectronic devices remains unexplored. In this work, we additively deposit nanoscale CsPbBr3 NC features on photonic structures via EHD inkjet printing. We perform transmission electron microscopy of EHD inkjet printed NCs to demonstrate that the NCs' structural integrity is maintained throughout the printing process. Finally, NCs are deposited with sub-micrometer control on an array of parallel silicon nitride nanophotonic cavities and demonstrate cavity-emitter coupling via photoluminescence spectroscopy. These results demonstrate EHD inkjet printing as a scalable, precise method to pattern luminescent nanomaterials for photonic applications.

2.
Mater Horiz ; 9(1): 61-87, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34851347

RESUMO

This tutorial review presents our perspective on designing organic molecules for the functionalization of inorganic nanomaterial surfaces, through the model of an "anchor-functionality" paradigm. This "anchor-functionality" paradigm is a streamlined design strategy developed from a comprehensive range of materials (e.g., lead halide perovskites, II-VI semiconductors, III-V semiconductors, metal oxides, diamonds, carbon dots, silicon, etc.) and applications (e.g., light-emitting diodes, photovoltaics, lasers, photonic cavities, photocatalysis, fluorescence imaging, photo dynamic therapy, drug delivery, etc.). The structure of this organic interface modifier comprises two key components: anchor groups binding to inorganic surfaces and functional groups that optimize their performance in specific applications. To help readers better understand and utilize this approach, the roles of different anchor groups and different functional groups are discussed and explained through their interactions with inorganic materials and external environments.


Assuntos
Nanoestruturas , Semicondutores , Lasers , Silício
3.
Nano Lett ; 20(12): 8626-8633, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33238099

RESUMO

Carrier spins in semiconductor nanocrystals are promising candidates for quantum information processing. Using a combination of time-resolved Faraday rotation and photoluminescence spectroscopies, we demonstrate optical spin polarization and coherent spin precession in colloidal CsPbBr3 nanocrystals that persists up to room temperature. By suppressing the influence of inhomogeneous hyperfine fields with a small applied magnetic field, we demonstrate inhomogeneous hole transverse spin-dephasing times (T2*) that approach the nanocrystal photoluminescence lifetime, such that nearly all emitted photons derive from coherent hole spins. Thermally activated LO phonons drive additional spin dephasing at elevated temperatures, but coherent spin precession is still observed at room temperature. These data reveal several major distinctions between spins in nanocrystalline and bulk CsPbBr3 and open the door for using metal-halide perovskite nanocrystals in spin-based quantum technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...