Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38996184

RESUMO

Carbon electrodes are ideal for electrochemistry with molecular catalysts, exhibiting facile charge transfer and good stability. Yet for solar-driven catalysis with semiconductor light absorbers, stable semiconductor/carbon interfaces can be difficult to achieve, and carbon's high optical extinction means it can only be used in ultrathin layers. Here, we demonstrate a plasma-enhanced chemical vapor deposition process that achieves well-controlled deposition of out-of-plane "fuzzy" graphene (FG) on thermally oxidized Si substrates. The resulting Si|FG interfaces possess a silicon oxycarbide (SiOC) interfacial layer, implying covalent bonding between Si and the FG film that is consistent with the mechanical robustness observed from the films. The FG layer is uniform and tunable in thickness and optical transparency by deposition time. Using p-type Si|FG substrates, noncovalent immobilization of cobalt phthalocyanine (CoPc) molecular catalysts was employed for the photoelectrochemical reduction of CO2 in aqueous solution. The Si|FG|CoPc photocathodes exhibited good catalytic activity, yielding a current density of ∼1 mA/cm2, Faradaic efficiency for CO of ∼70% (balance H2), and stable photocurrent for at least 30 h at -1.5 V vs Ag/AgCl under 1-sun illumination. The results suggest that plasma-deposited FG is a robust carbon electrode for molecular catalysts and suitable for further development of aqueous-stable Si photocathodes for CO2 reduction.

2.
Acc Chem Res ; 57(13): 1803-1814, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38859612

RESUMO

ConspectusNeurotechnology has seen dramatic improvements in the last three decades. The major focus in the field has been to design electrical communication platforms with high spatial resolution, stability, and translatability for understanding and affecting neural pathways. The deployment of nanomaterials in bioelectronics has enhanced the capabilities of conventional approaches employing microelectrode arrays (MEAs) for electrical interfaces, allowing the construction of miniaturized, high-performance neuroelectronics (Garg, R.; et al. ACS Appl. Nano Mater. 2023, 6, 8495). While these advancements in the electrical neuronal interface have revolutionized neurotechnology both in scale and breadth, an in-depth understanding of neurons' interactions is challenging due to the complexity of the environments where the cells and tissues are laid. The activity of large, three-dimensional neuronal systems has proven difficult to accurately monitor and modulate, and chemical cell-cell communication is often completely neglected. Recent breakthroughs in nanotechnology have provided opportunities to use new nonelectric modes of communication with neurons and to significantly enhance electrical signal interface capabilities. The enhanced electrochemical activity and optical activity of nanomaterials owing to their nonbulk electronic properties and surface nanostructuring have seen extensive utilization. Nanomaterials' enhanced optical activity enables remote neural state modulation, whereas the defect-rich surfaces provide an enormous number of available electrocatalytic sites for neurochemical detection and electrochemical modulation of cell microenvironments through Faradaic processes. Such unique properties can allow multimodal neural interrogation toward generating closed-loop interfaces with access to more complete neural state descriptors. In this Account, we will review recent advances and our efforts spearheaded toward utilizing nanostructured electrodes for enhanced bidirectional interfaces with neurons, the application of unique hybrid nanomaterials for remote nongenetic optical stimulation of neurons, tunable nanomaterials for highly sensitive and selective neurotransmitter detection, and the utilization of nanomaterials as electrocatalysts toward electrochemically modulating cellular activity. We highlight applications of these technologies across cell types through nanomaterial engineering with a focus on multifunctional graphene nanostructures applied though several modes of neural modulation but also an exploration of broad material classes for maximizing the potency of closed-loop bioelectronics.


Assuntos
Nanoestruturas , Neurônios , Nanoestruturas/química , Neurônios/fisiologia , Humanos , Microeletrodos , Animais , Nanotecnologia/métodos
3.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945597

RESUMO

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia Celular , Fenômenos Fisiológicos Respiratórios
4.
Neuroimage ; 284: 120429, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923279

RESUMO

Electrical interference from various sources is a common issue for experimental extracellular electrophysiology recordings collected using multi-electrode array neural recording systems. This interference deteriorates the signal-to-noise ratio (SNR) of the raw electrophysiology signals and hampers the accuracy of data post-processing using techniques such as spike-sorting. Traditional signal processing methods to digitally remove electrical interference during post-processing include bandpass filtering to limit the signal to the relevant spectral range of the biological data, e.g., the spikes band (300 Hz - 7 kHz), targeted notch filtering to remove power line interference from standard alternating current mains electricity and common reference removal to minimize noise common to all electrodes. These methods require a priori knowledge of the frequency of the interfering signal source to address the unique electromagnetic interference environment of each experimental setup. We discuss an adaptive method for automatically removing narrow-band electrical interference through a spectral peak detection and removal (SPDR) step that can be applied during post-processing of the recorded data, based on the intuition that tall, narrowband signals localized in the signal spectrum correspond to interference, rather than the activity of neurons. A spectral peak prominence (SPP) threshold is used to detect these peaks in the frequency domain, which will then be removed via notch filtering. We applied this method to simulated waveforms and also experimental electrophysiology data collected from cerebral organoids to demonstrate its effectiveness for removing unwanted interference without significantly distorting the neural signals. We discuss that proper selection of the SPP threshold is required to avoid over-filtering, which can result in distortion of the electrophysiology data. We also compare the firing-rate activity in the filtered electrophysiology with fluorescence calcium imaging, a secondary cellular activity marker, to quantify signal distortion and provide bounds on SNR-based optimization of the SPP threshold. The adaptive filtering technique demonstrated in this paper is a powerful method that can automatically detect and remove interband interference in recorded neural signals, potentially enabling data collection in more naturalistic settings where external interference signals are difficult to eliminate.


Assuntos
Neurônios , Processamento de Sinais Assistido por Computador , Humanos , Neurônios/fisiologia , Razão Sinal-Ruído , Algoritmos
5.
Adv Healthc Mater ; : e2302330, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37755313

RESUMO

Understanding the communication of individual neurons necessitates precise control of neural activity. Photothermal modulation is a remote and non-genetic technique to control neural activity with high spatiotemporal resolution. The local heat release by photothermally active nanomaterial will change the membrane properties of the interfaced neurons during light illumination. Recently, it is demonstrated that the two-dimensional Ti3 C2 Tx MXene is an outstanding candidate to photothermally excite neurons with low incident energy. However, the safety of using Ti3 C2 Tx for neural modulation is unknown. Here, the biosafety of Ti3 C2 Tx -based photothermal modulation is thoroughly investigated, including assessments of plasma membrane integrity, mitochondrial stress, and oxidative stress. It is demonstrated that culturing neurons on 25 µg cm-2 Ti3 C2 Tx films and illuminating them with laser pulses (635 nm) with different incident energies (2-10 µJ per pulse) and different pulse frequencies (1 pulse, 1 Hz, and 10 Hz) neither damage the cell membrane, induce cellular stress, nor generate oxidative stress. The threshold energy to cause damage (i.e., 14 µJ per pulse) exceeded the incident energy for neural excitation (<10 µJ per pulse). This multi-assay safety evaluation provides crucial insights for guiding the establishment of light conditions and protocols in the clinical translation of photothermal modulation.

6.
Front Artif Intell ; 6: 1116870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925616

RESUMO

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

7.
Adv Nanobiomed Res ; 3(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816547

RESUMO

Hydrogels are promising materials for soft and implantable strain sensors owing to their large compliance (E<100 kPa) and significant extensibility (εmax >500%) compared to other polymer networks. Further, hydrogels can be functionalized to seamlessly integrate with many types of tissues. However, most current methods attempt to imbue additional electronic functionality to structural hydrogel materials by incorporating fillers with orthogonal properties such as electronic or mixed ionic conduction. Although composite strategies may improve performance or facilitate heterogeneous integration with downstream hardware, composites complicate the path for regulatory approval and may compromise the otherwise compelling properties of the underlying structural material. Here we report hydrogel strain sensors composed of genipin-crosslinked gelatin and dopamine-functionalized poly(ethylene glycol) for in vivo monitoring of cardiac function. By measuring their impedance only in their resistive regime (>10 kHz), hysteresis is reduced and the resulting gauge factor is increased by ~50x to 1.02±0.05 and 1.46±0.05 from approximately 0.03-0.05 for PEG-Dopa and genipin-crosslinked gelatin respectively. Adhesion and in vivo biocompatibility are studied to support implementation of strain sensors for monitoring cardiac output in porcine models. Impedance-based strain sensing in the kilohertz regime simplifies the piezoresistive behavior of these materials and expands the range of hydrogel-based strain sensors.

8.
Small ; 19(11): e2207015, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642828

RESUMO

Thermal interfaces are vital for effective thermal management in modern electronics, especially in the emerging fields of flexible electronics and soft robotics that impose requirements for interface materials to be soft and flexible in addition to having high thermal performance. Here, a novel sandwich-structured thermal interface material (TIM) is developed that simultaneously possesses record-low thermal resistance and high flexibility. Frequency-domain thermoreflectance (FDTR) is employed to investigate the overall thermal performance of the sandwich structure. As the core of this sandwich, a vertically aligned copper nanowire (CuNW) array preserves its high intrinsic thermal conductivity, which is further enhanced by 60% via a thick 3D graphene (3DG) coating. The thin copper layers on the top and bottom play the critical roles in protecting the nanowires during device assembly. Through the bottom-up fabrication process, excellent contacts between the graphene-coated CuNWs and the top/bottom layer are realized, leading to minimal interfacial resistance. In total, the thermal resistance of the sandwich is determined as low as ~0.23 mm2  K W-1 . This work investigates a new generation of flexible thermal interface materials with an ultralow thermal resistance, which therefore renders the great promise for advanced thermal management in a wide variety of electronics.

9.
ACS Nano ; 17(3): 2602-2610, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36649646

RESUMO

Despite the recent advancements of passive and active cooling solutions for electronics, interfaces between materials have generally become crucial barriers for thermal transport because of intrinsic material dissimilarity and surface roughness at interfaces. We demonstrate a 3D graphene-nanowire "sandwich" thermal interface that enables an ultralow thermal resistance of ∼0.24 mm2·K/W that is about 1 order of magnitude smaller than those of solders and several orders of magnitude lower than those of thermal greases, gels, and epoxies, as well as a low elastic and shear moduli of ∼1 MPa like polymers and foams. The flexible 3D "sandwich" exhibits excellent long-term reliability with >1000 cycles over a broad temperature range from -55 °C to 125 °C. This nanostructured thermal interface material can greatly benefit a variety of electronic systems and devices by allowing them to operate at lower temperatures or at the same temperature but with higher performance and higher power density.

10.
MRS Adv ; 8(19): 1047-1060, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38283671

RESUMO

Seamless integration of the body and electronics toward the understanding, quantification, and control of disease states remains one of the grand scientific challenges of this era. As such, research efforts have been dedicated to developing bioelectronic devices for chemical, mechanical, and electrical sensing, and cellular and tissue functionality modulation. The technologies developed to achieve these capabilities cross a wide range of materials and scale (and dimensionality), e.g., from micrometer to centimeters (from 2-dimensional (2D) to 3-dimensional (3D) assemblies). The integration into multimodal systems which allow greater insight and control into intrinsically multifaceted biological systems requires careful design and selection. This snapshot review will highlight the state-of-the-art in cellular recording and modulation as well as the material considerations for the design and manufacturing of devices integrating their capabilities.

11.
Nano Lett ; 22(21): 8633-8640, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36301701

RESUMO

The correct wiring of a neural network requires neuron to integrate an incredible repertoire of cues found in their extracellular environment. The astonishing efficiency of this process plays a pivotal role in the correct wiring of the brain during development and axon regeneration. Biologically inspired micro- and nanostructured substrates have been shown to regulate axonal outgrowth. In parallel, several studies investigated graphene's potential as a conductive neural interface, able to enhance cell adhesion, neurite sprouting and outgrowth. Here, we engineered a 3D single- to few-layer fuzzy graphene morphology (3DFG), 3DFG on a collapsed Si nanowire (SiNW) mesh template (NT-3DFGc), and 3DFG on a noncollapsed SiNW mesh template (NT-3DFGnc) as neural-instructive materials. The micrometric protruding features of the NWs templates dictated neuronal growth cone establishment, as well as influencing axon elongation and branching. Furthermore, neurons-to-graphene coupling was investigated with comprehensive view of integrin-mediated contact adhesion points and plasma membrane curvature processes.


Assuntos
Axônios , Grafite , Axônios/metabolismo , Grafite/metabolismo , Regeneração Nervosa , Crescimento Neuronal , Neuritos/metabolismo , Células Cultivadas
12.
ACS Sens ; 7(8): 2253-2261, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35938877

RESUMO

Real-time in vivo detection of biomarkers, particularly nitric oxide (NO), is of utmost importance for critical healthcare monitoring, therapeutic dosing, and fundamental understanding of NO's role in regulating many physiological processes. However, detection of NO in a biological medium is challenging due to its short lifetime and low concentration. Here, we demonstrate for the first time that photonic microring resonators (MRRs) can provide real-time, direct, and in vivo detection of NO in a mouse wound model. The MRR encodes the NO concentration information into its transfer function in the form of a resonance wavelength shift. We show that these functionalized MRRs, fabricated using complementary metal oxide semiconductor (CMOS) compatible processes, can achieve sensitive detection of NO (sub-µM) with excellent specificity and no apparent performance degradation for more than 24 h of operation in biological medium. With alternative functionalizations, this compact lab-on-chip optical sensing platform could support real-time in vivo detection of myriad of biochemical species.


Assuntos
Técnicas Biossensoriais , Silício , Animais , Camundongos , Óxido Nítrico , Óptica e Fotônica , Fótons
13.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884343

RESUMO

Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.


Assuntos
Dopamina , Nanotubos de Carbono , Animais , Encéfalo , Corpo Estriado , Humanos , Camundongos
14.
ACS Appl Mater Interfaces ; 13(42): 50206-50212, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34662104

RESUMO

In this work, we fabricate multidimensional silicon-graphene hybrid nanostructures composed of three-dimensional (3D) out-of-plane graphene flakes on a silicon nanowire core. By changing the synthesis temperature (700 and 1100 °C) and time (5, 10, and 20 min), we obtain two different types of 3D graphene flakes with tunable dimensions and structure parameters. We characterize the thermal transport behavior of this hybrid multidimensional material in a broad temperature range of 20-460 K. With different morphologies and structures, the effective thermal conductivity of the silicon-graphene hybrid nanostructures varies from 1 to 7 W/(m·K) at room temperature. We also apply molecular dynamics simulation and density functional theory to elucidate the thermal transport mechanisms in the silicon-graphene hybrid nanostructures.

15.
ACS Nano ; 15(9): 14662-14671, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34431659

RESUMO

Understanding cellular electrical communications in both health and disease necessitates precise subcellular electrophysiological modulation. Nanomaterial-assisted photothermal stimulation was demonstrated to modulate cellular activity with high spatiotemporal resolution. Ideal candidates for such an application are expected to have high absorbance at the near-infrared window, high photothermal conversion efficiency, and straightforward scale-up of production to allow future translation. Here, we demonstrate two-dimensional Ti3C2Tx (MXene) as an outstanding candidate for remote, nongenetic, optical modulation of neuronal electrical activity with high spatiotemporal resolution. Ti3C2Tx's photothermal response measured at the single-flake level resulted in local temperature rises of 2.31 ± 0.03 and 3.30 ± 0.02 K for 635 and 808 nm laser pulses (1 ms, 10 mW), respectively. Dorsal root ganglion (DRG) neurons incubated with Ti3C2Tx film (25 µg/cm2) or Ti3C2Tx flake dispersion (100 µg/mL) for 6 days did not show a detectable influence on cellular viability, indicating that Ti3C2Tx is noncytotoxic. DRG neurons were photothermally stimulated using Ti3C2Tx films and flakes with as low as tens of microjoules per pulse incident energy (635 nm, 2 µJ for film, 18 µJ for flake) with subcellular targeting resolution. Ti3C2Tx's straightforward and large-scale synthesis allows translation of the reported photothermal stimulation approach in multiple scales, thus presenting a powerful tool for modulating electrophysiology from single-cell to additive manufacturing of engineered tissues.


Assuntos
Neurônios , Titânio
16.
Biosens Bioelectron ; 191: 113440, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171734

RESUMO

The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 µm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.


Assuntos
Técnicas Biossensoriais , Grafite , Dopamina , Técnicas Eletroquímicas , Humanos , Microeletrodos
17.
Sci Adv ; 7(15)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33827809

RESUMO

Graphene with its unique electrical properties is a promising candidate for carbon-based biosensors such as microelectrodes and field effect transistors. Recently, graphene biosensors were successfully used for extracellular recording of action potentials in electrogenic cells; however, intracellular recordings remain beyond their current capabilities because of the lack of an efficient cell poration method. Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio. We exploit the generation of hot carriers by ultrafast pulsed laser for porating the cell membrane and creating an intimate contact between the 3DFG electrodes and the intracellular domain. This approach enables us to detect the effects of drugs on the action potential shape of human-derived cardiomyocytes. The 3DFG electrodes combined with laser poration may be used for all-carbon intracellular microelectrode arrays to allow monitoring of the cellular electrophysiological state.

18.
J Neural Eng ; 18(5)2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33770775

RESUMO

Objective.Three-dimensional (3D) neuronal spheroid culture serves as a powerful model system for the investigation of neurological disorders and drug discovery. The success of such a model system requires techniques that enable high-resolution functional readout across the entire spheroid. Conventional microelectrode arrays and implantable neural probes cannot monitor the electrophysiology (ephys) activity across the entire native 3D geometry of the cellular construct.Approach.Here, we demonstrate a 3D self-rolled biosensor array (3D-SR-BA) integrated with a 3D cortical spheroid culture for simultaneousin vitroephys recording, functional Ca2+imaging, while monitoring the effect of drugs. We have also developed a signal processing pipeline to detect neural firings with high spatiotemporal resolution from the ephys recordings based on established spike sorting methods.Main results.The 3D-SR-BAs cortical spheroid interface provides a stable, high sensitivity recording of neural action potentials (<50µV peak-to-peak amplitude). The 3D-SR-BA is demonstrated as a potential drug screening platform through the investigation of the neural response to the excitatory neurotransmitter glutamate. Upon addition of glutamate, the neural firing rates increased notably corresponding well with the functional Ca2+imaging.Significance.Our entire system, including the 3D-SR-BA integrated with neuronal spheroid culture, enables simultaneous ephys recording and functional Ca2+imaging with high spatiotemporal resolution in conjunction with chemical stimulation. We demonstrate a powerful toolset for future studies of tissue development, disease progression, and drug testing and screening, especially when combined with native spheroid cultures directly extracted from humans.


Assuntos
Técnicas Biossensoriais , Esferoides Celulares , Humanos , Microeletrodos , Sistema Nervoso , Neurônios
19.
Biophys Rev (Melville) ; 2(4): 041304, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005709

RESUMO

The ability to manipulate the electrophysiology of electrically active cells and tissues has enabled a deeper understanding of healthy and diseased tissue states. This has primarily been achieved via input/output (I/O) bioelectronics that interface engineered materials with biological entities. Stable long-term application of conventional I/O bioelectronics advances as materials and processing techniques develop. Recent advancements have facilitated the development of graphene-based I/O bioelectronics with a wide variety of functional characteristics. Engineering the structural, physical, and chemical properties of graphene nanostructures and integration with modern microelectronics have enabled breakthrough high-density electrophysiological investigations. Here, we review recent advancements in 2D and 3D graphene-based I/O bioelectronics and highlight electrophysiological studies facilitated by these emerging platforms. Challenges and present potential breakthroughs that can be addressed via graphene bioelectronics are discussed. We emphasize the need for a multidisciplinary approach across materials science, micro-fabrication, and bioengineering to develop the next generation of I/O bioelectronics.

20.
RSC Adv ; 11(16): 9628-9637, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35423429

RESUMO

Each year approximately 1.3 billion tons of food is either wasted or lost. One of the most wasted foods in the world is bread. The ability to reuse wasted food in another area of need, such as water scarcity, would provide a tremendous sustainable outcome. To address water scarcity, many areas of the world are now implementing desalination. One desalination technology that could benefit from food waste reuse is capacitive deionization (CDI). CDI has emerged as a powerful desalination technology that essentially only requires a pair of electrodes and a low-voltage power supply. Developing freestanding carbon electrodes from food waste could lower the overall cost of CDI systems and the environmental and economic impact from food waste. We created freestanding CDI electrodes from bread. The electrodes possessed a hierarchical pore structure that enabled both high salt adsorption capacity and one of the highest reported values for hydraulic permeability to date in a flow-through CDI system. We also developed a sustainable technique for electrode fabrication that does not require the use of common laboratory equipment and could be deployed in decentralized locations and developing countries with low-financial resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...