Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198903

RESUMO

The study's primary purpose was to explore the abrasive water jet (AWJ) cut machinability of stainless steel X5CrNi18-10 (1.4301). The study analyzed the effects of such process parameters as the traverse speed (TS), the depth of cut (DC), and the abrasive mass flow rate (AR) on the surface roughness (Ra) concerning the thickness of the workpiece. Three different thicknesses were cut under different conditions; the Ra was measured at the top, in the middle, and the bottom of the cut. Experimental results were used in the developed feed-forward artificial neural network (ANN) to predict the Ra. The ANN's model was validated using k-fold cross-validation. A lowest test root mean squared error (RMSE) of 0.2084 was achieved. The results of the predicted Ra by the ANN model and the results of the experimental data were compared. Additionally, as TS and DC were recognized, analysis of variance at a 95% confidence level was used to determine the most significant factors. Consequently, the ANN input parameters were modified, resulting in improved prediction; results show that the proposed model could be a useful tool for optimizing AWJ cut process parameters for predicting Ra. Its main advantage is the reduced time needed for experimentation.

2.
Pharmaceutics ; 13(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206285

RESUMO

Microneedles (MNs) represent the concept of attractive, minimally invasive puncture devices of micron-sized dimensions that penetrate the skin painlessly and thus facilitate the transdermal administration of a wide range of active substances. MNs have been manufactured by a variety of production technologies, from a range of materials, but most of these manufacturing methods are time-consuming and expensive for screening new designs and making any modifications. Additive manufacturing (AM) has become one of the most revolutionary tools in the pharmaceutical field, with its unique ability to manufacture personalized dosage forms and patient-specific medical devices such as MNs. This review aims to summarize various 3D printing technologies that can produce MNs from digital models in a single step, including a survey on their benefits and drawbacks. In addition, this paper highlights current research in the field of 3D printed MN-assisted transdermal drug delivery systems and analyzes parameters affecting the mechanical properties of 3D printed MNs. The current regulatory framework associated with 3D printed MNs as well as different methods for the analysis and evaluation of 3D printed MN properties are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...