Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(3): 230-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507695

RESUMO

As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.


Assuntos
Marte , Voo Espacial , Humanos , Meio Ambiente Extraterreno , Exobiologia , Contenção de Riscos Biológicos , Astronave
2.
Sci Rep ; 13(1): 19382, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938241

RESUMO

Many mammals rely on volatile organic chemical compounds (VOCs) produced by bacteria for their communication and behavior, though little is known about the exact molecular mechanisms or bacterial species that are responsible. We used metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r = 0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of importance were four MAGs classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.


Assuntos
Canal Anal , Microbiota , Gatos , Animais , Metabolômica , Microbiota/genética , Metagenoma , Metaboloma , Mamíferos
3.
Res Sq ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214811

RESUMO

Animals rely on volatile chemical compounds for their communication and behavior. Many of these compounds are sequestered in endocrine and exocrine glands and are synthesized by anaerobic microbes. While the volatile organic compound (VOC) or microbiome composition of glandular secretions has been investigated in several mammalian species, few have linked specific bacterial taxa to the production of volatiles or to specific microbial gene pathways. Here, we use metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r=0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of these, four were inferred to have high relative abundance in metagenome profiles and had close relatives that were recovered as cultured isolates. These four MAGs were classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.

4.
Microbiol Resour Announc ; 12(3): e0101122, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840549

RESUMO

Whole-genome sequencing can be used to better understand and assess the functional abilities of microorganisms isolated from spacecraft hardware and associated surfaces for planetary protection (PP) purposes. We sequenced 191 isolates from 6 spaceflight missions with PP requirements and identified them using Illumina-based sequencing methods and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry.

5.
mSphere ; 7(6): e0017722, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36218344

RESUMO

Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of "relic RNA," noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring. IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Águas Residuárias , Pandemias
6.
Open Forum Infect Dis ; 9(5): ofac135, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35479304

RESUMO

We found no significant difference in cycle threshold values between vaccinated and unvaccinated persons infected with severe acute respiratory syndrome coronavirus 2 Delta, overall or stratified by symptoms. Given the substantial proportion of asymptomatic vaccine breakthrough cases with high viral levels, interventions, including masking and testing, should be considered in settings with elevated coronavirus disease 2019 transmission.

7.
PLoS One ; 17(4): e0267212, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452479

RESUMO

Testing surfaces in school classrooms for the presence of SARS-CoV-2, the virus that causes COVID-19, can provide public-health information that complements clinical testing. We monitored the presence of SARS-CoV-2 RNA in five schools (96 classrooms) in Davis, California (USA) by collecting weekly surface-swab samples from classroom floors and/or portable high-efficiency particulate air (HEPA) units (n = 2,341 swabs). Twenty-two surfaces tested positive, with qPCR cycle threshold (Ct) values ranging from 36.07-38.01. Intermittent repeated positives in a single room were observed for both floor and HEPA filter samples for up to 52 days, even following regular cleaning and HEPA filter replacement after a positive result. We compared the two environmental sampling strategies by testing one floor and two HEPA filter samples in 57 classrooms at Schools D and E. HEPA filter sampling yielded 3.02% and 0.41% positivity rates per filter sample collected for Schools D and E, respectively, while floor sampling yielded 0.48% and 0% positivity rates. Our results indicate that HEPA filter swabs are more sensitive than floor swabs at detecting SARS-CoV-2 RNA in interior spaces. During the study, all schools were offered weekly free COVID-19 clinical testing through Healthy Davis Together (HDT). HDT also offered on-site clinical testing in Schools D and E, and upticks in testing participation were observed following a confirmed positive environmental sample. However, no confirmed COVID-19 cases were identified among students associated with classrooms yielding positive environmental samples. The positive samples detected in this study appeared to contain relic viral RNA from individuals infected before the monitoring program started and/or RNA transported into classrooms via fomites. High-Ct positive results from environmental swabs detected in the absence of known active infections supports this conclusion. Additional research is needed to differentiate between fresh and relic SARS-CoV-2 RNA in environmental samples and to determine what types of results should trigger interventions.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Poeira , Monitoramento Ambiental , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Instituições Acadêmicas
8.
Vet Med Sci ; 8(3): 1049-1055, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060350

RESUMO

BACKGROUND: Trigeminal-mediated headshaking (TMHS) in horses is a form of neuropathic pain of undetermined cause that often results in euthanasia. The role of microbiota in TMHS has not been investigated in diseased horses. OBJECTIVE: To investigate if gastrointestinal microbiota in the cecum is different in horses with TMHS compared to a control population, during a summer season with clinical manifestations of disease. ANIMALS: Ten castrated horses: five with TMHS and five neurologically normal controls. METHODS: All horses were sourced from our institution and kept under the same husbandry and dietary conditions. All horses were fed orchard grass hay for 30 days and then were euthanized due to chronic untreatable conditions including TMHS and orthopedic disease (control group). Caecal samples for microbiota analysis were collected within 20 min after euthanasia. Sequencing was performed using an Illumina MiSeq platform and the microbiome was analyzed. RESULTS: The caecal microbiota of horses with TMHS was similar to control horses in terms of diversity but differed significantly with Methanocorpusculum spp. having higher abundance in horses with TMHS.  CONCLUSIONS AND CLINICAL IMPORTANCE: Methanocorpusculum spp. was more abundant in the cecum of horses with TMHS. However, its role in disease is unknown. Furthermore, it could also represent an incidental finding due to our small population size.


Assuntos
Doenças dos Cavalos , Microbiota , Animais , Ceco , Dieta/veterinária , Cavalos , Estações do Ano
9.
Microbiol Resour Announc ; 10(31): e0055721, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351234

RESUMO

Here, we report 11 metagenome-assembled genomes (MAGs) reconstructed from freshwater and saltwater aquaria, including representatives of Polynucleobacter, Anaerolinea, Roseobacter, Flavobacteriia, Octadecabacter, Mycobacterium, and Candidate Phyla Radiation (CPR) members. These MAGs can serve as a resource for aquatic research and elucidating the role of CPR taxa in the built environment.

10.
PLoS One ; 16(6): e0253578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166421

RESUMO

RATIONALE: There is little doubt that aerosols play a major role in the transmission of SARS-CoV-2. The significance of the presence and infectivity of this virus on environmental surfaces, especially in a hospital setting, remains less clear. OBJECTIVES: We aimed to analyze surface swabs for SARS-CoV-2 RNA and infectivity, and to determine their suitability for sequence analysis. METHODS: Samples were collected during two waves of COVID-19 at the University of California, Davis Medical Center, in COVID-19 patient serving and staff congregation areas. qRT-PCR positive samples were investigated in Vero cell cultures for cytopathic effects and phylogenetically assessed by whole genome sequencing. MEASUREMENTS AND MAIN RESULTS: Improved cleaning and patient management practices between April and August 2020 were associated with a substantial reduction of SARS-CoV-2 qRT-PCR positivity (from 11% to 2%) in hospital surface samples. Even though we recovered near-complete genome sequences in some, none of the positive samples (11 of 224 total) caused cytopathic effects in cultured cells suggesting this nucleic acid was either not associated with intact virions, or they were present in insufficient numbers for infectivity. Phylogenetic analysis suggested that the SARS-CoV-2 genomes of the positive samples were derived from hospitalized patients. Genomic sequences isolated from qRT-PCR negative samples indicate a superior sensitivity of viral detection by sequencing. CONCLUSIONS: This study confirms the low likelihood that SARS-CoV-2 contamination on hospital surfaces contains infectious virus, disputing the importance of fomites in COVID-19 transmission. Ours is the first report on recovering near-complete SARS-CoV-2 genome sequences directly from environmental surface swabs.


Assuntos
COVID-19/genética , Genoma Viral , Hospitais de Ensino , Filogenia , SARS-CoV-2/genética , Análise de Sequência de RNA , Animais , COVID-19/epidemiologia , COVID-19/transmissão , Chlorocebus aethiops , Humanos , SARS-CoV-2/isolamento & purificação , Células Vero
11.
mSystems ; 6(2)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653941

RESUMO

The United States' large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 h to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and techno-economic impacts of chilling methods on chicken broilers in a university meat laboratory setting. We discovered that air chilling methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that air chilling resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas Finally, a techno-economic analysis highlighted potential economic advantages to air chilling compared to water chilling in facility locations where water costs are a more significant factor than energy costs.IMPORTANCE As the poultry industry works to become more sustainable and to reduce the volume of food waste, it is critical to consider points in the processing system that can be altered to make the process more efficient. In this study, we demonstrate that the method used during chilling (air versus water chilling) influences the final product microbial community, quality, and physiochemistry. Notably, the use of air chilling appears to delay the bloom of Pseudomonas spp. that are the primary spoilers in packaged meat products. By using air chilling to reduce carcass temperatures instead of water chilling, producers may extend the time until spoilage of the products and, depending on the cost of water in the area, may have economic and sustainability advantages. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility.

12.
PeerJ ; 8: e10177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150080

RESUMO

Koalas (Phascolarctos cinereus) are highly specialized herbivorous marsupials that feed almost exclusively on Eucalyptus leaves, which are known to contain varying concentrations of many different toxic chemical compounds. The literature suggests that Lonepinella koalarum, a bacterium in the Pasteurellaceae family, can break down some of these toxic chemical compounds. Furthermore, in a previous study, we identified L. koalarum as the most predictive taxon of koala survival during antibiotic treatment. Therefore, we believe that this bacterium may be important for koala health. Here, we isolated a strain of L. koalarum from a healthy koala female and sequenced its genome using a combination of short-read and long-read sequencing. We placed the genome assembly into a phylogenetic tree based on 120 genome markers using the Genome Taxonomy Database (GTDB), which currently does not include any L. koalarum assemblies. Our genome assembly fell in the middle of a group of Haemophilus, Pasteurella and Basfia species. According to average nucleotide identity and a 16S rRNA gene tree, the closest relative of our isolate is L. koalarum strain Y17189. Then, we annotated the gene sequences and compared them to 55 closely related, publicly available genomes. Several genes that are known to be involved in carbohydrate metabolism could exclusively be found in L. koalarum relative to the other taxa in the pangenome, including glycoside hydrolase families GH2, GH31, GH32, GH43 and GH77. Among the predicted genes of L. koalarum were 79 candidates putatively involved in the degradation of plant secondary metabolites. Additionally, several genes coding for amino acid variants were found that had been shown to confer antibiotic resistance in other bacterial species against pulvomycin, beta-lactam antibiotics and the antibiotic efflux pump KpnH. In summary, this genetic characterization allows us to build hypotheses to explore the potentially beneficial role that L. koalarum might play in the koala intestinal microbiome. Characterizing and understanding beneficial symbionts at the whole genome level is important for the development of anti- and probiotic treatments for koalas, a highly threatened species due to habitat loss, wildfires, and high prevalence of Chlamydia infections.

13.
PeerJ ; 8: e9235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551196

RESUMO

BACKGROUND: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. FINDINGS: We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. CONCLUSIONS: We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of "environmental" taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.

14.
17.
mSystems ; 5(2)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265315

RESUMO

With the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in coronavirus disease 2019 (COVID-19), corporate entities, federal, state, county, and city governments, universities, school districts, places of worship, prisons, health care facilities, assisted living organizations, daycares, homeowners, and other building owners and occupants have an opportunity to reduce the potential for transmission through built environment (BE)-mediated pathways. Over the last decade, substantial research into the presence, abundance, diversity, function, and transmission of microbes in the BE has taken place and revealed common pathogen exchange pathways and mechanisms. In this paper, we synthesize this microbiology of the BE research and the known information about SARS-CoV-2 to provide actionable and achievable guidance to BE decision makers, building operators, and all indoor occupants attempting to minimize infectious disease transmission through environmentally mediated pathways. We believe this information is useful to corporate and public administrators and individuals responsible for building operations and environmental services in their decision-making process about the degree and duration of social-distancing measures during viral epidemics and pandemics.

18.
J Genomics ; 8: 25-29, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190126

RESUMO

Christensenella minuta was first formally described in 2012 as a member of a novel species, genus, and proposed family of Christensenellaceae. C. minuta was later shown in one study to be part of the most heritable taxonomic group in the human gut microbiome and to be enriched in people with low body mass index (BMI). Mouse work demonstrated that injection of cultured C. minuta into germ-free mice prevented the onset of obesity after a fecal transplant to the mice from high BMI individuals. Here we describe the genome sequence of C. minuta DSM 22607. Examination and analysis of the annotation revealed an unusually high number of genes predicted to be involved in carbohydrate metabolism, many of which were multiple homologs of RbsA, RbsB and RbsC, which together make up the Ribose ABC Transport System. These genes may be also involved in quorum sensing which could potentially relate to the importance of C. minuta in the gut microbiome.

19.
PLoS One ; 15(1): e0223033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31935215

RESUMO

Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and translocate effectors with diverse function across the bacterial cell membrane. Legionella pneumophila, the species most commonly associated with Legionellosis, encodes a T1SS at the lssXYZABD locus which is responsible for the secretion of the virulence factor RtxA. Many investigations have failed to detect lssD, the gene encoding the membrane fusion protein of the RtxA T1SS, in non-pneumophila Legionella, which has led to the assumption that this system is a virulence factor exclusively possessed by L. pneumophila. Here we discovered RtxA and its associated T1SS in a novel Legionella taurinensis strain, leading us to question whether this system may be more widespread than previously thought. Through a bioinformatic analysis of publicly available data, we classified and determined the distribution of four T1SSs including the RtxA T1SS and four novel T1SSs among diverse Legionella spp. The ABC transporter of the novel Legionella T1SS Legionella repeat protein secretion system shares structural similarity to those of diverse T1SS families, including the alkaline protease T1SS in Pseudomonas aeruginosa. The Legionella bacteriocin (1-3) secretion systems T1SSs are novel putative bacteriocin transporting T1SSs as their ABC transporters include C-39 peptidase domains in their N-terminal regions, with LB2SS and LB3SS likely constituting a nitrile hydratase leader peptide transport T1SSs. The LB1SS is more closely related to the colicin V T1SS in Escherichia coli. Of 45 Legionella spp. whole genomes examined, 19 (42%) were determined to possess lssB and lssD homologs. Of these 19, only 7 (37%) are known pathogens. There was no difference in the proportions of disease associated and non-disease associated species that possessed the RtxA T1SS (p = 0.4), contrary to the current consensus regarding the RtxA T1SS. These results draw into question the nature of RtxA and its T1SS as a singular virulence factor. Future studies should investigate mechanistic explanations for the association of RtxA with virulence.


Assuntos
Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Legionella/genética , Legionelose/genética , Sistemas de Secreção Tipo I/genética , Transportadores de Cassetes de Ligação de ATP/genética , Membrana Celular/genética , Biologia Computacional , Escherichia coli/genética , Genoma Bacteriano/genética , Humanos , Legionella/patogenicidade , Legionella pneumophila/genética , Legionelose/microbiologia , Análise de Sequência , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
20.
PLoS Biol ; 17(11): e3000533, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710600

RESUMO

The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies.


Assuntos
Organismos Aquáticos/microbiologia , Microbiota/fisiologia , Simbiose/fisiologia , Animais , Bactérias/classificação , Ecossistema , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...