Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Arthritis Rheumatol ; 75(7): 1216-1228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36704840

RESUMO

OBJECTIVE: Photosensitivity is one of the most common manifestations of systemic lupus erythematosus (SLE), yet its pathogenesis is not well understood. The normal-appearing epidermis of patients with SLE exhibits increased ultraviolet B (UVB)-driven cell death that persists in cell culture. Here, we investigated the role of epigenetic modification and Hippo signaling in enhanced UVB-induced apoptosis seen in SLE keratinocytes. METHODS: We analyzed DNA methylation in cultured keratinocytes from SLE patients compared to keratinocytes from healthy controls (n = 6/group). Protein expression was validated in cultured keratinocytes using immunoblotting and immunofluorescence. An immortalized keratinocyte line overexpressing WWC1 was generated via lentiviral vector. WWC1-driven changes were inhibited using a large tumor suppressor kinase 1/2 (LATS1/2) inhibitor (TRULI) and small interfering RNA (siRNA). The interaction between the Yes-associated protein (YAP) and the transcriptional enhancer associate domain (TEAD) was inhibited by overexpression of an N/TERT cell line expressing a tetracycline-inducible green fluorescent protein-tagged protein that inhibits YAP-TEAD binding (TEADi). Apoptosis was assessed using cleaved caspase 3/7 and TUNEL staining. RESULTS: Hippo signaling was the top differentially methylated pathway in SLE versus control keratinocytes. SLE keratinocytes (n = 6) showed significant hypomethylation (Δß = -0.153) and thus overexpression of the Hippo regulator WWC1 (P = 0.002). WWC1 overexpression increased LATS1/2 kinase activation, leading to YAP cytoplasmic retention and altered proapoptotic transcription in SLE keratinocytes. Accordingly, UVB-mediated apoptosis in keratinocytes could be enhanced by WWC1 overexpression or YAP-TEAD inhibition, mimicking SLE keratinocytes. Importantly, inhibition of LATS1/2 with either the chemical inhibitor TRULI or siRNA effectively eliminated enhanced UVB-apoptosis in SLE keratinocytes. CONCLUSION: Our work unravels a novel driver of photosensitivity in SLE: overactive Hippo signaling in SLE keratinocytes restricts YAP transcriptional activity, leading to shifts that promote UVB apoptosis.


Assuntos
Via de Sinalização Hippo , Lúpus Eritematoso Sistêmico , Humanos , Queratinócitos/metabolismo , Lúpus Eritematoso Sistêmico/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
2.
Clin Immunol ; 243: 109116, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36075396

RESUMO

Systemic lupus erythematosus (SLE) is more common in women than men, but the disease is more severe when it affects men. Lupus CD4+ T cells demonstrate dysregulated DNA methylation patterns. The purpose of this study was to investigate genome-wide CD4+ T cell differential DNA methylation between men (n = 12) and women (n = 10) with SLE. DNA methylation was evaluated using the Infinium MethylationEPIC array, and differences between male versus female SLE patients were calculated with probe-wise linear regressions with adjustment for age and disease activity. We identified 198 hypomethylated and 108 hypermethylated CpG sites in CD4+ T cells isolated from male compared to female SLE patients, annotated to 201 and 102 genes, respectively. A great proportion of these genes were related to apoptosis and immune functions. Among differentially methylated genes, CASP10, which is involved in the extrinsic apoptotic pathway, and multiple genes involved in T cell function and differentiation such as ELAVL1, UHRF1, and SMAD2, were hypomethylated in men compared to women with SLE. Importantly, network analysis of differentially methylated genes revealed a pattern consistent with increased activation of ROCK, PP2A, PI3K, and ERK1/ERK2 in men compared to women with SLE. These data provide epigenetic evidence suggesting activation of key T cell pathways in men compared to women with SLE and shed new light into possible mechanisms underlying increased SLE disease severity in men.


Assuntos
Linfócitos T CD4-Positivos , Metilação de DNA , Epigênese Genética , Lúpus Eritematoso Sistêmico , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Feminino , Humanos , Inflamação/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Fosfatidilinositol 3-Quinases/genética , Ubiquitina-Proteína Ligases/genética
3.
J Autoimmun ; 132: 102882, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987173

RESUMO

OBJECTIVES: Behçet's disease tends to be more severe in men than women. This study was undertaken to investigate sex-specific genetic effects in Behçet's disease. METHODS: A total of 1762 male and 1216 female patients with Behçet's disease from six diverse populations were studied, with the majority of patients of Turkish origin. Genotyping was performed using an Infinium ImmunoArray-24 BeadChip, or extracted from available genotyping data. Following imputation and extensive quality control measures, genome-wide association analysis was performed comparing male to female patients in the Turkish cohort, followed by a meta-analysis of significant results in all six populations. In addition, a weighted genetic risk score for Behçet's disease was calculated and compared between male and female patients. RESULTS: Genetic association analysis comparing male to female patients with Behçet's disease from Turkey revealed an association with male sex in HLA-B/MICA within the HLA region with a GWAS level of significance (rs2848712, OR = 1.46, P = 1.22 × 10-8). Meta-analysis of the effect in rs2848712 across six populations confirmed these results. Genetic risk score for Behçet's disease was significantly higher in male compared to female patients from Turkey. Higher genetic risk for Behçet's disease was observed in male patients in HLA-B/MICA (rs116799036, OR = 1.45, P = 1.95 × 10-8), HLA-C (rs12525170, OR = 1.46, P = 5.66 × 10-7), and KLRC4 (rs2617170, OR = 1.20, P = 0.019). In contrast, IFNGR1 (rs4896243, OR = 0.86, P = 0.011) was shown to confer higher genetic risk in female patients. CONCLUSIONS: Male patients with Behçet's disease are characterized by higher genetic risk compared to female patients. This genetic difference, primarily derived from our Turkish cohort, is largely explained by risk within the HLA region. These data suggest that genetic factors might contribute to differences in disease presentation between men and women with Behçet's disease.


Assuntos
Síndrome de Behçet , Humanos , Feminino , Masculino , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/epidemiologia , Síndrome de Behçet/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Antígenos HLA-C , Testes Genéticos
4.
Ann Rheum Dis ; 81(10): 1428-1437, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35710306

RESUMO

OBJECTIVES: Lupus T cells demonstrate aberrant DNA methylation patterns dominated by hypomethylation of interferon-regulated genes. The objective of this study was to identify additional lupus-associated DNA methylation changes and determine the genetic contribution to epigenetic changes characteristic of lupus. METHODS: Genome-wide DNA methylation was assessed in naïve CD4+ T cells from 74 patients with lupus and 74 age-matched, sex-matched and race-matched healthy controls. We applied a trend deviation analysis approach, comparing methylation data in our cohort with over 16 500 samples. Methylation quantitative trait loci (meQTL) analysis was performed by integrating methylation profiles with genome-wide genotyping data. RESULTS: In addition to the previously reported epigenetic signature in interferon-regulated genes, we observed hypomethylation in the promoter region of the miR-17-92 cluster in patients with lupus. Members of this microRNA cluster play an important role in regulating T cell proliferation and differentiation. Expression of two microRNAs in this cluster, miR-19b1 and miR-18a, showed a significant positive correlation with lupus disease activity. Among miR-18a target genes, TNFAIP3, which encodes a negative regulator of nuclear factor kappa B, was downregulated in lupus CD4+ T cells. MeQTL identified in lupus patients showed overlap with genetic risk loci for lupus, including CFB and IRF7. The lupus risk allele in IRF7 (rs1131665) was associated with significant IRF7 hypomethylation. However, <1% of differentially methylated CpG sites in patients with lupus were associated with an meQTL, suggesting minimal genetic contribution to lupus-associated epigenotypes. CONCLUSION: The lupus defining epigenetic signature, characterised by robust hypomethylation of interferon-regulated genes, does not appear to be determined by genetic factors. Hypomethylation of the miR-17-92 cluster that plays an important role in T cell activation is a novel epigenetic locus for lupus.


Assuntos
Lúpus Eritematoso Sistêmico , MicroRNAs , Linfócitos T , Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Humanos , Interferons/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Eur J Rheumatol ; 9(1): 3-7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34554910

RESUMO

OBJECTIVE: Systemic lupus erythematosus (SLE) is a complex heterogenous autoimmune disease that can affect multiple organs. We performed clinical clustering analysis to describe a lupus cohort from the University of Pittsburgh Medical Center. METHODS: A total of 724 patients who met the American College of Rheumatology (ACR) classification criteria for SLE were included in this study. Clustering was performed using the ACR classification criteria and the partitioning around medoid method. Correlation analysis was performed using the Spearman's Rho test. RESULTS: Patients with SLE in our cohort identify three district clinical disease subsets. Patients in cluster 1 were significantly more likely to develop renal and hematologic involvement, and had overrepresentation in African-American and male lupus patients. Clusters 2 and 3 identified a milder disease, with a significantly less likelihood of organ complications. Patients in cluster 2 are characterized by malar rash and photosensitivity, while patients in cluster 3 are characterized by oral ulcers, which is present in ~90% of patients within this cluster. The presence of photosensitivity or oral ulcers appears to be protective against the development of lupus nephritis in our cohort. CONCLUSION: We describe a large cohort of SLE from Western Pennsylvania and identify three distinct clinical disease subgroups. Clustering analysis might help to better manage and predict disease complications in heterogenous diseases like lupus.

6.
Clin Immunol ; 228: 108756, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992755

RESUMO

Scleroderma refers to a group of chronic fibrotic immune-mediated diseases of unknown etiology. Characterizing epigenetic changes in childhood-onset scleroderma, systemic sclerosis or localized scleroderma, has not been previously performed. The aim of this study was to assess DNA methylation differences and similarities between juvenile systemic sclerosis (jSSc) and juvenile localized scleroderma (jLS) compared to matched healthy controls. Genome-wide DNA methylation changes in peripheral blood mononuclear cell samples were assessed using the MethylationEPIC array followed by bioinformatic analysis and limited functional assessment. We identified a total of 105 and 144 differentially methylated sites compared to healthy controls in jSSc and jLS, respectively. The majority of differentially methylated sites and genes represented were unique to either jSSc or jLS suggesting a different underlying epigenetic pattern in both diseases. Among shared differentially methylated genes, methylation levels in a CpG site in FGFR2 can distinguish between LS and healthy PBMCs with a high accuracy. Canonical pathway analysis revealed that inflammatory pathways were enriched in genes differentially methylated in jSSc, including STAT3, NF-κB, and IL-15 pathways. In contrast, the HIPPO signaling pathway was enriched in jLS. Our data also suggest a potential role for NOTCH3 in both jSSc and jLS, and revealed a number of transcription factors unique to each of the two diseases. In summary, our data revealed important insights into jSSc and jLS and suggest a potentially novel epigenetic diagnostic biomarker for LS.


Assuntos
Metilação de DNA , Esclerodermia Localizada/etiologia , Escleroderma Sistêmico/etiologia , Biomarcadores , Ilhas de CpG , Suscetibilidade a Doenças , Epigênese Genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Esclerodermia Localizada/metabolismo , Esclerodermia Localizada/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Transdução de Sinais
7.
Arthritis Rheumatol ; 73(7): 1244-1252, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33393726

RESUMO

OBJECTIVE: Behçet's disease is a complex systemic inflammatory vasculitis of incompletely understood etiology. This study was undertaken to investigate genetic associations with Behçet's disease in a diverse multiethnic population. METHODS: A total of 9,444 patients and controls from 7 different populations were included in this study. Genotyping was performed using an Infinium ImmunoArray-24 v.1.0 or v.2.0 BeadChip. Analysis of expression data from stimulated monocytes, and epigenetic and chromatin interaction analyses were performed. RESULTS: We identified 2 novel genetic susceptibility loci for Behçet's disease, including a risk locus in IFNGR1 (rs4896243) (odds ratio [OR] 1.25; P = 2.42 × 10-9 ) and within the intergenic region LNCAROD/DKK1 (rs1660760) (OR 0.78; P = 2.75 × 10-8 ). The risk variants in IFNGR1 significantly increased IFNGR1 messenger RNA expression in lipopolysaccharide-stimulated monocytes. In addition, our results replicated the association (P < 5 × 10-8 ) of 6 previously identified susceptibility loci in Behçet's disease: IL10, IL23R, IL12A-AS1, CCR3, ADO, and LACC1, reinforcing the notion that these loci are strong genetic factors in Behçet's disease shared across ancestries. We also identified >30 genetic susceptibility loci with a suggestive level of association (P < 5 × 10-5 ), which will require replication. Finally, functional annotation of genetic susceptibility loci in Behçet's disease revealed their possible regulatory roles and suggested potential causal genes and molecular mechanisms that could be further investigated. CONCLUSION: We performed the largest genetic association study in Behçet's disease to date. Our findings reveal novel putative functional variants associated with the disease and replicate and extend the genetic associations in other loci across multiple ancestries.


Assuntos
Síndrome de Behçet/genética , Monócitos/imunologia , Receptores de Interferon/genética , Síndrome de Behçet/imunologia , Estudos de Casos e Controles , Cromossomos Humanos Par 10/genética , DNA Intergênico/genética , Epigênese Genética , Feminino , Mutação com Ganho de Função , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lipopolissacarídeos , Masculino , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo , Receptores de Interferon/imunologia , Receptor de Interferon gama
8.
Am J Hum Genet ; 108(1): 84-99, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33308445

RESUMO

Takayasu arteritis is a rare inflammatory disease of large arteries. We performed a genetic study in Takayasu arteritis comprising 6,670 individuals (1,226 affected individuals) from five different populations. We discovered HLA risk factors and four non-HLA susceptibility loci in VPS8, SVEP1, CFL2, and chr13q21 and reinforced IL12B, PTK2B, and chr21q22 as robust susceptibility loci shared across ancestries. Functional analysis proposed plausible underlying disease mechanisms and pinpointed ETS2 as a potential causal gene for chr21q22 association. We also identified >60 candidate loci with suggestive association (p < 5 × 10-5) and devised a genetic risk score for Takayasu arteritis. Takayasu arteritis was compared to hundreds of other traits, revealing the closest genetic relatedness to inflammatory bowel disease. Epigenetic patterns within risk loci suggest roles for monocytes and B cells in Takayasu arteritis. This work enhances understanding of the genetic basis and pathophysiology of Takayasu arteritis and provides clues for potential new therapeutic targets.


Assuntos
Predisposição Genética para Doença/genética , Arterite de Takayasu/genética , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Polimorfismo de Nucleotídeo Único/genética
9.
JCI Insight ; 5(22)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33108347

RESUMO

Epigenetic dysregulation is implicated in the pathogenesis of lupus. We performed a longitudinal analysis to assess changes in DNA methylation in lupus neutrophils over 4 years of follow-up and across disease activity levels using 229 patient samples. We demonstrate that DNA methylation profiles in lupus are partly determined by ancestry-associated genetic variations and are highly stable over time. DNA methylation levels in 2 CpG sites correlated significantly with changes in lupus disease activity. Progressive demethylation in SNX18 was observed with increasing disease activity in African American patients. Importantly, demethylation of a CpG site located within GALNT18 was associated with the development of active lupus nephritis. Differentially methylated genes between African American and European American lupus patients include type I IFN-response genes such as IRF7 and IFI44, and genes related to the NF-κB pathway. TREML4, which plays a vital role in TLR signaling, was hypomethylated in African American patients and demonstrated a strong cis-methylation quantitative trait loci (cis-meQTL) effect among 8855 cis-meQTL associations identified in our study.


Assuntos
Biomarcadores/análise , Negro ou Afro-Americano/genética , Metilação de DNA , Epigênese Genética , Nefrite Lúpica/patologia , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Humanos , Fator Regulador 7 de Interferon/genética , Estudos Longitudinais , Nefrite Lúpica/genética , Pessoa de Meia-Idade , Prognóstico , Receptores Imunológicos/genética , Transdução de Sinais , Nexinas de Classificação/genética , População Branca/genética , Adulto Jovem
10.
medRxiv ; 2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32511654

RESUMO

Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specially, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.

11.
Clin Immunol ; 215: 108410, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32276140

RESUMO

Infection caused by SARS-CoV-2 can result in severe respiratory complications and death. Patients with a compromised immune system are expected to be more susceptible to a severe disease course. In this report we suggest that patients with systemic lupus erythematous might be especially prone to severe COVID-19 independent of their immunosuppressed state from lupus treatment. Specifically, we provide evidence in lupus to suggest hypomethylation and overexpression of ACE2, which is located on the X chromosome and encodes a functional receptor for the SARS-CoV-2 spike glycoprotein. Oxidative stress induced by viral infections exacerbates the DNA methylation defect in lupus, possibly resulting in further ACE2 hypomethylation and enhanced viremia. In addition, demethylation of interferon-regulated genes, NFκB, and key cytokine genes in lupus patients might exacerbate the immune response to SARS-CoV-2 and increase the likelihood of cytokine storm. These arguments suggest that inherent epigenetic dysregulation in lupus might facilitate viral entry, viremia, and an excessive immune response to SARS-CoV-2. Further, maintaining disease remission in lupus patients is critical to prevent a vicious cycle of demethylation and increased oxidative stress, which will exacerbate susceptibility to SARS-CoV-2 infection during the current pandemic. Epigenetic control of the ACE2 gene might be a target for prevention and therapy in COVID-19.


Assuntos
Infecções por Coronavirus/genética , Epigênese Genética , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Viremia/genética , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Antígeno CD11a/genética , Antígeno CD11a/imunologia , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Citocinas/genética , Citocinas/imunologia , Metilação de DNA , Progressão da Doença , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/complicações , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Ligação Proteica , Receptores KIR/genética , Receptores KIR/imunologia , SARS-CoV-2 , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Viremia/complicações , Viremia/epidemiologia , Viremia/imunologia
12.
Proc Natl Acad Sci U S A ; 116(52): 26779-26787, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822606

RESUMO

Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the "four core genotypes" model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.

13.
J Autoimmun ; 102: 126-132, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128893

RESUMO

BACKGROUND AND OBJECTIVE: Ankylosing spondylitis is a chronic inflammatory disease characterized by inflammation of the sacroiliac joints and the spine that can lead to significant pain, immobility, and disability. The etiology and pathogenesis of ankylosing spondylitis are incompletely understood, though most patients carry the HLA-B*27 allele. The objective of this study was to evaluate DNA methylation changes in ankylosing spondylitis with the goal of revealing novel mechanistic insights into this disease. METHODS: Genome-wide DNA methylation analysis was performed in whole blood DNA samples using the Infinium MethylationEPIC array in patients with ankylosing spondylitis compared to age, sex, and race matched patients with osteoarthritis as a non-inflammatory disease control. We studied 24 patients with ankylosing spondylitis, including 12 patients who carry HLA-B*27 and 12 patients who are HLA-B*27 negative. DNA methylation analysis was performed with adjustment for blood cell composition in each sample. RESULTS: We identified a total of 67 differentially methylated sites between ankylosing spondylitis patients and osteoarthritis controls. Hypermethylated genes found included GTPase-related genes, while hypomethylated genes included HCP5, which encodes a lncRNA within the MHC region, previously associated with genetic risk for psoriasis and toxic epidermal necrolysis. Carrying HLA-B*27 was associated with robust hypomethylation of HCP5, tubulin folding cofactor A (TBCA) and phospholipase D Family Member 6 (PLD6) in ankylosing spondylitis patients. Hypomethylation within HCP5 involves a CpG site that contains a single nucleotide polymorphism in linkage disequilibrium with HLA-B*27 and that controls DNA methylation at this locus in an allele-specific manner. CONCLUSIONS: A genome-wide DNA methylation analysis in ankylosing spondylitis identified DNA methylation patterns that could provide potential novel insights into this disease. Our findings suggest that HLA-B*27 might play a role in ankylosing spondylitis in part through inducing epigenetic dysregulation.


Assuntos
Metilação de DNA/genética , Antígeno HLA-B27/genética , Espondilite Anquilosante/genética , Epigênese Genética/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Osteoartrite/genética , Fosfolipase D/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética
14.
Proc Natl Acad Sci U S A ; 116(9): 3695-3702, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755532

RESUMO

Scleroderma (SSc) is a complex disease that involves activation of the immune system, vascular complications, and tissue fibrosis. The histone methyltransferase enhancer of zeste homolog 2 (EZH2) mediates trimethylation of lysine 27 of histone 3 (H3K27me3), which acts as a repressive epigenetic mark. Both EZH2 and H3K27me3 were elevated in SSc dermal fibroblasts and endothelial cells compared with healthy controls. EZH2 inhibitor DZNep halted fibrosis both in vitro and in vivo. In SSc fibroblasts, DZNep dose-dependently reduced the expression of profibrotic genes and inhibited migratory activity of SSc fibroblasts. We show that epigenetic dysregulation and overexpression of LRRC16A explains EZH2-mediated fibroblast migration in SSc. In endothelial cells, inhibition of EZH2 restored normal angiogenesis in SSc via activating the Notch pathway, specifically by up-regulating the Notch ligand DLL4. Our results demonstrate that overexpression of EZH2 in SSc fibroblasts and endothelial cells is profibrotic and antiangiogenic. Targeting EZH2 or EZH2-regulated genes might be of therapeutic potential in SSc.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Fibrose/genética , Proteínas dos Microfilamentos/genética , Esclerodermia Difusa/genética , Animais , Bleomicina/toxicidade , Movimento Celular/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Repressão Epigenética/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/induzido quimicamente , Fibrose/patologia , Regulação da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Metilação , Camundongos , Neovascularização Fisiológica , Receptores Notch/genética , Transdução de Sinais
15.
Ann Rheum Dis ; 78(4): 519-528, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674474

RESUMO

OBJECTIVE: We examined genome-wide DNA methylation changes in CD8+ T cells from patients with lupus and controls and investigated the functional relevance of some of these changes in lupus. METHODS: Genome-wide DNA methylation of lupus and age, sex and ethnicity-matched control CD8+ T cells was measured using the Infinium MethylationEPIC arrays. Measurement of relevant cell subsets was performed via flow cytometry. Gene expression was quantified by qPCR. Inhibiting STAT1 and CIITA was performed using fludarabine and CIITA siRNA, respectively. RESULTS: Lupus CD8+ T cells had 188 hypomethylated CpG sites compared with healthy matched controls. Among the most hypomethylated were sites associated with HLA-DRB1. Genes involved in the type-I interferon response, including STAT1, were also found to be hypomethylated. IFNα upregulated HLA-DRB1 expression on lupus but not control CD8+ T cells. Lupus and control CD8+ T cells significantly increased STAT1 mRNA levels after treatment with IFNα. The expression of CIITA, a key interferon/STAT1 dependent MHC-class II regulator, is induced by IFNα in lupus CD8+ T cells, but not healthy controls. CIITA knockdown and STAT1 inhibition experiments revealed that HLA-DRB1 expression in lupus CD8+ T cells is dependent on CIITA and STAT1 signalling. Coincubation of naïve CD4+ T cells with IFNα-treated CD8+ T cells led to CD4+ T cell activation, determined by increased expression of CD69 and cytokine production, in patients with lupus but not in healthy controls. This can be blocked by neutralising antibodies targeting HLA-DR. CONCLUSIONS: Lupus CD8+ T cells are epigenetically primed to respond to type-I interferon. We describe an HLA-DRB1+ CD8+ T cell subset that can be induced by IFNα in patients with lupus. A possible pathogenic role for CD8+ T cells in lupus that is dependent on a high type-I interferon environment and epigenetic priming warrants further characterisation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Metilação de DNA , Cadeias HLA-DRB1/genética , Lúpus Eritematoso Sistêmico/genética , Fator de Transcrição STAT1/genética , Adulto , Idoso , Linfócitos T CD4-Positivos/imunologia , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica/imunologia , Estudo de Associação Genômica Ampla , Humanos , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , RNA Mensageiro/genética , Transativadores/genética , Regulação para Cima/imunologia , Adulto Jovem
16.
Arthritis Care Res (Hoboken) ; 71(3): 337-342, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30570838

RESUMO

OBJECTIVE: There continues to be a debate about the value and purpose of maintenance of certification (MOC) programs in the US. The goal of this study is to assess the impact, value, and purpose of MOC programs in rheumatology. METHODS: A survey was sent to 3,107 rheumatologists in the US. The survey addressed how rheumatologists perceive the value and impact of MOC programs on rheumatology practice and patient care. RESULTS: A total of 515 rheumatologists completed this survey. The majority (74.8%) believed there was no significant value in MOC, beyond what is already achieved from continuing medical education. Most rheumatologists did not believe MOC was valuable in improving patient care (63.5%), and the majority felt that the primary reason for creating MOC was either the financial well-being of board-certifying organizations (43.4%) or to satisfy administrative requirements in health systems (30%). Although 65.6% perceived that staying current with new medical knowledge was a positive impact of MOC programs, the MOC was perceived to result in time away from providing patient care (74.6%) and time away from family (74%). When asked about potential effects of requiring MOC, 77.7% reported physician burnout, 67.4% early physician retirement, and 63.9% anticipated an effect on reducing the overall number of practicing rheumatologists. CONCLUSION: The majority of rheumatologists do not believe there is significant value for MOC programs. There is evidence for lack of trust in board-certifying organizations, and rheumatologists believe MOC programs contribute to physician burnout, early retirement, and loss in the rheumatology workforce.


Assuntos
Atitude do Pessoal de Saúde , Certificação/normas , Competência Clínica/normas , Percepção , Reumatologistas/normas , Conselhos de Especialidade Profissional/normas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Percepção/fisiologia , Reumatologistas/psicologia , Inquéritos e Questionários/normas , Estados Unidos/epidemiologia
17.
Clin Immunol ; 196: 110-116, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30471352

RESUMO

Antiphospholipid syndrome (APS) is a systemic autoimmune disease characterized by thromboembolic events and pregnancy loss. We sought to characterize the DNA methylation profile of primary APS in comparison to healthy controls and individuals with SLE. In primary APS neutrophils compared to controls, 17 hypomethylated and 25 hypermethylated CpG sites were identified. Notable hypomethylated genes included ETS1, a genetic risk locus for SLE, and PTPN2, a genetic risk locus for other autoimmune diseases. Gene ontology analysis of hypomethylated genes revealed enrichment of genes involved in pregnancy. None of the differentially methylated sites in primary APS were differentially methylated in SLE neutrophils, and there was no demethylation of interferon signature genes in primary APS as is seen in SLE. Hypomethylation within a single probe in the IFI44L promoter (cg06872964) was able to distinguish SLE from primary APS with a sensitivity of 93.3% and specificity of 80.0% at a methylation fraction of 0.329.


Assuntos
Síndrome Antifosfolipídica/genética , Metilação de DNA , Neutrófilos/metabolismo , Adulto , Idoso , Síndrome Antifosfolipídica/imunologia , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Genoma , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteínas Supressoras de Tumor/genética
18.
Proc Natl Acad Sci U S A ; 115(18): 4755-4760, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666259

RESUMO

The susceptibility to autoimmune diseases is affected by genetic and environmental factors. In rheumatoid arthritis (RA), the shared epitope (SE), a five-amino acid sequence motif encoded by RA-associated HLA-DRB1 alleles, is the single most significant genetic risk factor. The risk conferred by the SE is increased in a multiplicative way by exposure to various environmental pollutants, such as cigarette smoke. The mechanism of this synergistic interaction is unknown. It is worth noting that the SE has recently been found to act as a signal transduction ligand that facilitates differentiation of Th17 cells and osteoclasts in vitro and in vivo. Intriguingly, the aryl hydrocarbon receptor (AhR), a transcription factor that mediates the xenobiotic effects of many pollutants, including tobacco combustion products, has been found to activate similar biologic effects. Prompted by these similarities, we sought to determine whether the SE and AhR signaling pathways interact in autoimmune arthritis. Here we uncovered a nuclear factor kappa B-mediated synergistic interaction between the SE and AhR pathways that leads to markedly enhanced osteoclast differentiation and Th17 polarization in vitro. Administration of AhR pathway agonists to transgenic mice carrying human SE-coding alleles resulted in a robust increase in arthritis severity, bone destruction, overabundance of osteoclasts, and IL17-expressing cells in the inflamed joints and draining lymph nodes of arthritic mice. Thus, this study identifies a previously unrecognized mechanism of gene-environment interaction that could provide insights into the well-described but poorly understood amplification of the genetic risk for RA upon exposure to environmental pollutants.


Assuntos
Artrite Experimental , Poluentes Ambientais/imunologia , Epitopos/imunologia , Interação Gene-Ambiente , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Células Th17 , Alelos , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Poluentes Ambientais/toxicidade , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th17/imunologia , Células Th17/patologia
19.
Curr Opin Rheumatol ; 30(1): 4-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28957963

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to discuss recent observations of epigenetic changes related to the complex pathogenesis of systemic vasculitides and their contribution to the field. RECENT FINDINGS: There have been new observations of epigenetic changes in vasculitis and their potential role in disease pathogenesis in antineutrophil cytoplasmic antibody-associated vasculitis, giant-cell arteritis, Kawasaki disease, Behçet's disease, and IgA vasculitis. Some of this recent work has focused on the efficacy of using DNA methylation and miRNA expression as clinical biomarkers for disease activity and how DNA methylation and histone modifications interact to regulate disease-related gene expression. SUMMARY: DNA methylation, histone modification, and miRNA expression changes are all fruitful ground for biomarker discovery and therapeutic targets in vasculitis. Current knowledge has provided targeted and suggested effects, but in many cases, has relied upon small cohorts, cosmopolitan cell populations, and limited knowledge of functional interactions. Expanding our knowledge of how these epigenetic mechanisms interact in a disease-specific and cell-specific manner will help to better understand the pathogenesis of systemic vasculitis.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Código das Histonas/genética , MicroRNAs/genética , Vasculite Sistêmica/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Síndrome de Behçet/genética , Biomarcadores , Epigenômica , Regulação da Expressão Gênica/genética , Arterite de Células Gigantes/genética , Humanos , Vasculite por IgA/genética , Síndrome de Linfonodos Mucocutâneos/genética
20.
J Autoimmun ; 86: 19-28, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066026

RESUMO

OBJECTIVE: The goal of this study was to comprehensively characterize CD4+CD28+ T cells overexpressing CD11a and KIR genes, and examine the relationship between this T cell subset, genetic risk, and disease activity in lupus. METHODS: The size of the CD4+CD28+KIR+CD11ahi T cell subset was determined by flow cytometry, and total genetic risk for lupus was calculated in 105 female patients using 43 confirmed genetic susceptibility loci. Primary CD4+CD28+KIR+CD11ahi T cells were isolated from lupus patients or were induced from healthy individuals using 5-azacytidine. Genome-wide DNA methylation was analyzed using an array-based approach, and the transcriptome was assessed by RNA sequencing. Transcripts in the CDR3 region were used to assess the TCR repertoire. Chromatin accessibility was determined using ATAC-seq. RESULTS: A total of 31,019 differentially methylated sites were identified in induced KIR+CD11ahi T cells with >99% being hypomethylated. RNA sequencing revealed a clear pro-inflammatory transcriptional profile. TCR repertoire analysis suggests less clonotype diversity in KIR+CD11ahi compared to autologous KIR-CD11alow T cells. Similarly, primary KIR+CD11ahi T cells isolated from lupus patients were hypomethylated and characterized by a pro-inflammatory chromatin structure. We show that the genetic risk for lupus was significantly higher in African-American compared to European-American lupus patients. The demethylated CD4+CD28+KIR+CD11ahi T cell subset size was a better predictor of disease activity in young (age ≤ 40) European-American patients independent of genetic risk. CONCLUSION: CD4+CD28+KIR+CD11ahi T cells are demethylated and characterized by pro-inflammatory epigenetic and transcriptional profiles in lupus. Eliminating these cells or blocking their pro-inflammatory characteristics might present a novel therapeutic approach for lupus.


Assuntos
Negro ou Afro-Americano , Inflamação/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Antígeno CD11a/metabolismo , Antígenos CD28/metabolismo , Antígenos CD4/metabolismo , Células Cultivadas , Metilação de DNA , Progressão da Doença , Epigênese Genética , Feminino , Perfil Genético , Humanos , Imunofenotipagem , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/epidemiologia , Receptores KIR/metabolismo , Risco , Análise de Sequência de RNA , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...