Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Spray Technol ; 32(1): 175-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521320

RESUMO

The nonlinear relationship between the input process parameters and in-flight particle characteristics of the atmospheric plasma spray (APS) is of paramount importance for coating properties design and quality. It is also known that the ageing of torch electrodes affects this relationship. In recent years, machine learning algorithms have proven to be able to take into account such complex nonlinear interactions. This work illustrates the application of ensemble methods to predict the in-flight particle temperature and velocity during an APS process considering torch electrodes ageing. Experiments were performed to record simultaneously the input process parameters, the in-flight powder particle characteristics and the electrodes usage time. Random Forest (RF) and Gradient Boosting (GB) were used to rank and select the features for the APS process data recorded as the electrodes aged and the corresponding predictive models were compared. The time series aspect of the multivariate APS in-flight particle characteristics data is explored. Two strategies of time series embedding are considered. The first one simply embeds the attributes and the targets from the previous n time segments considered without any modification; whereas the second strategy first performs differencing to make the time series stationary before embedding. For the present application, RF is found to be more suitable than GB since RF can predict both the in-flight particle velocity and temperature simultaneously, properly considering the interactions between the two targets. On the other hand, GB can only predict these two targets one at a time. The superior performance of both embedded predictive models and the feature rankings of them suggest that it is better to consider the APS data as time series for the in-flight particle characteristic prediction. In particular, it is demonstrated that it is advantageous to first make the time series stationary using the traditional differencing technique, even when modeling using RF.

2.
Nanotechnology ; 23(6): 065603, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22248479

RESUMO

The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski-Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and µ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...