Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 356: 124308, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844040

RESUMO

Antibiotics, frequently detected in aquatic ecosystems, can negatively impact the health of resident organisms. Although the study on the possible effects of antibiotics on these organisms has been increasing, there is still little information available on the molecular effects on exposed non-target organisms. In our study we used a label free proteomic approach and sea bream, Sparus aurata, to evaluate the effects of exposure to environmentally relevant concentrations of the antibiotic compounds ciprofloxacin (CIP), sulfadiazine (SULF) and trimethoprim (TRIM) produced at the protein level. Individuals of sea bream were exposed to single compounds at 5.2 ± 2.1 µg L-1 of CIP, 3.8 ± 2.7 µg L-1 of SULF and 25.7 ± 10.8 µg L-1 of TRIM for 21 days. After exposure, the number of differentially expressed proteins in the liver was 39, 73 and 4 for CIP, SULF and TRIM respectively. In the brain, there was no alteration of proteins after CIP and TRIM treatment, while 9 proteins were impacted after SULF treatment. The differentially expressed proteins were involved in cellular biological, metabolic, developmental, growth and biological regulatory processes. Overall, our study evidences the vulnerability of Sparus aurata, after exposure to environmentally relevant concentrations of the major antibiotics CIP, SULF and TRIM and that their chronic exposure could lead to a stress situation, altering the proteomic profile of key organs such as brain and liver.

2.
Sci Total Environ ; 912: 169178, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072265

RESUMO

Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to µg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 µg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.


Assuntos
Bivalves , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Bioacumulação , Ecossistema , Perfilação da Expressão Gênica , Bivalves/metabolismo , Biotransformação , Protetores Solares/toxicidade , Protetores Solares/metabolismo , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 316(Pt 2): 120678, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403875

RESUMO

DEET is one of the most frequently detected insect repellents in the environment reaching concentrations of several µg L-1 in surface water. There is scarce information available regarding its mode of action in non-target organisms. Here, we have used an integrated metabolomic and transcriptomic approach to elucidate the possible adverse effects of DEET exposure in the marine fish gilthead sea bream (Sparus aurata). Individuals were exposed at an environmentally relevant concentration of DEET (10 µg L-1) for 22 days in a continuous flow-through system. Transcriptomic analysis revealed 250 differentially expressed genes in liver, while metabolomic analysis identified 190 differentially modulated features in liver and 98 in plasma. Multi-omic data integration and visualization allowed elucidation of the modes of action of DEET exposure, including: energy depletion through the disruption of carbohydrate and amino acids metabolisms, oxidative stress leading to DNA damage, lipid peroxidation, and damage to cell membrane and apoptosis. Activation of xenobiotic pathway as well as the inmune-inflammatory reaction was evidenced in the present work.


Assuntos
Repelentes de Insetos , Dourada , Animais , Transcriptoma , DEET , Metabolômica
4.
Aquat Toxicol ; 250: 106243, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35872527

RESUMO

The high consumption and subsequent input of antibacterial compounds in marine ecosystems has become a worldwide problem. Their continuous presence in these ecosystems allows a direct interaction with aquatic organisms and can cause negative effects over time. The objective of the present study was to evaluate the effects of exposure to three antibacterial compounds of high consumption and presence in marine ecosystems (Ciprofloxacin CIP, Sulfadiazine SULF and Trimethoprim TRIM) on the physiology of the gilthead sea bream, Sparus aurata. Plasma parameters, enzymatic biomarkers of oxidative stress and damage and expression of genes related to stress and growth were assessed in exposed S. aurata specimens. For this purpose, sea bream specimens were exposed to individual compounds at concentrations of 5.2 ± 2.1 µg L-1 for CIP, 3.8 ± 2.7 µg L-1 for SULF and 25.7 ± 10.8 µg L-1 for TRIM during 21 days. Exposure to CIP up-regulated transcription of genes associated with the hypothalamic-pituitary-thyroid (HPT) (thyrotropin-releasing hormone, trh) and hypothalamic-pituitary-interrenal (HPI) axes (corticotropin-releasing hormone-binding protein, crhbp) in the brain, as well as altering several hepatic stress biomarkers (catalase, CAT; glutathione reductase, GR; and lipid peroxidation, LPO). Similar alterations at the hepatic level were observed after exposure to TRIM. Overall, our study indicates that S. aurata is vulnerable to environmentally relevant concentrations of CIP and TRIM and that their exposure could lead to a stress situation, altering the activity of antioxidant defense mechanisms as well as the activity of HPT and HPI axes.


Assuntos
Perciformes , Dourada , Poluentes Químicos da Água , Animais , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Ciprofloxacina/metabolismo , Ecossistema , Expressão Gênica , Glutationa Redutase/metabolismo , Perciformes/metabolismo , Dourada/metabolismo , Estresse Fisiológico , Sulfadiazina/metabolismo , Sulfadiazina/farmacologia , Trimetoprima/metabolismo , Trimetoprima/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 803: 150080, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525742

RESUMO

Sulisobenzone (BP-4) is one of the benzophenone type UV filters most frequently detected in aquatic ecosystems. As a suspected endocrine disrupting compound, scarce information is available yet about other molecular effects and its mechanism of action. Here, we used an integrated transcriptomic and metabolomic approach to improve the current understanding on the toxicity of BP-4 towards aquatic species. Gilt-head sea bream individuals were exposed at environmentally relevant concentrations (10 µg L-1) for 22 days. Transcriptomic analysis revealed 371 differentially expressed genes in liver while metabolomic analysis identified 123 differentially modulated features in plasma and 118 in liver. Integration of transcriptomic and metabolomic data showed disruption of the energy metabolism (>10 pathways related to the metabolism of amino acids and carbohydrates were impacted) and lipid metabolism (5 glycerophospholipids and the expression of 3 enzymes were affected), suggesting oxidative stress. We also observed, for the first time in vivo and at environmental relevant concentrations, the disruption of several enzymes involved in the steroid and thyroid hormones biosynthesis. DNA and RNA synthesis was also impacted by changes in the purine and pyrimidine metabolisms. Overall, the multiomic workflow presented here increases the evidence on suspected effects of BP-4 exposure and identifies additional modes of action of the compounds that could have been overlooked by using single omic approaches.


Assuntos
Dourada , Animais , Benzofenonas , Ecossistema , Feminino , Perfilação da Expressão Gênica , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...