Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (185)2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35938825

RESUMO

The family of caspases is known to mediate many cellular pathways beyond cell death, including cell differentiation, axonal pathfinding, and proliferation. Since the identification of the family of cell death proteases, there has been a search for tools to identify and expand the function of specific family members in development, health, and disease states. However, many of the currently commercially available caspase tools that are widely used are not specific for the targeted caspase. In this report, we delineate the approach we have used to identify, validate, and target caspase-9 in the nervous system using a novel inhibitor and genetic approaches with immunohistochemical read-outs. Specifically, we used the retinal neuronal tissue as a model to identify and validate the presence and function of caspases. This approach enables the interrogation of cell-type specific apoptotic and non-apoptotic caspase-9 functions and can be applied to other complex tissues and caspases of interest. Understanding the functions of caspases can help to expand current knowledge in cell biology, and can also be advantageous to identify potential therapeutic targets due to their involvement in disease.


Assuntos
Caspases , Retina , Apoptose , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspases/metabolismo , Diferenciação Celular , Sistema Nervoso , Retina/metabolismo
2.
J Vis Exp ; (182)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35532239

RESUMO

Advancements in ophthalmic imaging tools offer an unprecedented level of access to researchers working with animal models of neurovascular injury. To properly leverage this greater translatability, there is a need to devise reproducible methods of drawing quantitative data from these images. Optical coherence tomography (OCT) imaging can resolve retinal histology at micrometer resolution and reveal functional differences in vascular blood flow. Here, we delineate noninvasive vascular readouts that we use to characterize pathological damage post vascular insult in an optimized mouse model of retinal vein occlusion (RVO). These readouts include live imaging analysis of retinal morphology, disorganization of retinal inner layers (DRIL) measure of capillary ischemia, and fluorescein angiography measures of retinal edema and vascular density. These techniques correspond directly to those used to examine patients with retinal disease in the clinic. Standardizing these methods enables direct and reproducible comparison of animal models with clinical phenotypes of ophthalmic disease, increasing the translational power of vascular injury models.


Assuntos
Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Reprodutibilidade dos Testes , Retina/diagnóstico por imagem , Retina/patologia , Vasos Retinianos/diagnóstico por imagem , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Lesões do Sistema Vascular/patologia , Acuidade Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...