Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(22): 23138-23154, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854521

RESUMO

Keeping global warming at 2 degrees and below as stated in the "Paris Climate Agreement" and minimizing emissions can only be achieved by establishing a hydrogen (H2) ecosystem. Therefore, H2 technologies stand out in terms of accomplishing zero net emissions. Although H2 is the most abundant element in the known universe, molecular H2 is very rare in nature and must be produced. In H2 production, reforming natural gas and renewable hydrogen processes using electrolyzers comes to the fore. The key to all these technologies is to enhance production speed, performance, and system lifetime. At this point, composite membranes used in both processes come to the fore. This review article summarizes composite membrane technologies used in methane, ethanol, and biomass steam reforming processes, proton exchange membranes, alkaline water electrolysis, and hybrid sulfur cycle. In addition to these common H2 production technologies at large quantities, the innovative systems developed with solar energy integration for H2 generation were linked to composite membrane utilization. This study aimed to draw attention to the importance of composite membranes in H2 production. It aims to prepare a guiding summary for those working on membranes by combining the latest and cutting-edge studies on this subject.

2.
ACS Omega ; 9(17): 19209-19218, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708266

RESUMO

Recent advances in nanoparticle materials can facilitate the electro-reduction of carbon dioxide (CO2) to form valuable products with high selectivity. Copper (Cu)-based electrodes are promising candidates to drive efficient and selective CO2 reduction. However, the application of Cu-based chalcopyrite semiconductors in the electrocatalytic reduction of CO2 is still limited. This study demonstrated that novel zinc oxide (ZnO)/copper indium gallium sulfide (CIGS)/indium sulfide (InS) heterojunction electrodes could be used in effective CO2 reduction for formic acid production. It has been determined that Faradaic efficiencies for formic acid production using ZnO nanowire (NW) and nanoflower (NF) structures vary due to structural and morphological differences. A ZnO NW/CIGS/InS heterojunction electrode resulted in the highest efficiency of 77.2% and 0.35 mA cm-2 of current density at a -0.24 V (vs. reversible hydrogen electrode) bias potential. Adding a ZTO intermediate layer by the spray pyrolysis method decreased the yield of formic acid and increased the yield of H2. Our work offers a new heterojunction electrode for efficient formic acid production via cost-effective and scalable CO2 reduction.

3.
ACS Omega ; 8(17): 14952-14964, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37151495

RESUMO

In this study, three different morphologies, nanoflower (NF), nano sponge (NS), and nano urchin (NU), of zinc oxide (ZnO) nanostructures were synthesized successfully via a mild hydrothermal method. After synthesis, the samples were annealed in the atmosphere at 300, 600, and 800 °C. Although annealing provides different degradation kinetics for different morphologies, ZnO NS performed significantly better than other morphologies for all annealing temperatures we used in the study. When the photoluminescence, electron paramagnetic resonance spectroscopy, BET surface, and X-ray diffraction analysis results are examined, it is revealed that the defect structure, pore diameter, and crystallinity cumulatively affect the photocatalytic activity of ZnO nanocatalysts. As a result, to obtain high photocatalytic activity in rhodamine B (RhB) degradation, it is necessary to develop a ZnO catalyst with fewer core defects, more oxygen vacancies, near band emission, large crystallite size, and large pore diameter. The ZnO NS-800 °C nanocatalyst studied here had a 35.6 × 10-3 min-1 rate constant and excellent stability after a 5-cycle photocatalytic degradation of RhB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...