Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1383000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659582

RESUMO

In this review, we cover the current understanding of how radiation therapy, which uses ionizing radiation to kill cancer cells, mediates an anti-tumor immune response through the cGAS-STING pathway, and how STING agonists might potentiate this. We examine how cGAS-STING signaling mediates the release of inflammatory cytokines in response to nuclear and mitochondrial DNA entering the cytoplasm. The significance of this in the context of cancer is explored, such as in response to cell-damaging therapies and genomic instability. The contribution of the immune and non-immune cells in the tumor microenvironment is considered. This review also discusses the burgeoning understanding of STING signaling that is independent of inflammatory cytokine release and the various mechanisms by which cancer cells can evade STING signaling. We review the available data on how ionizing radiation stimulates cGAS-STING signaling as well as how STING agonists may potentiate the anti-tumor immune response induced by ionizing radiation. There is also discussion of how novel radiation modalities may affect cGAS-STING signaling. We conclude with a discussion of ongoing and planned clinical trials combining radiation therapy with STING agonists, and provide insights to consider when planning future clinical trials combining these treatments.

2.
Front Oncol ; 12: 870143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686111

RESUMO

Objectives: To investigate the efficacy and safety of lung stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC) including oligorecurrent and oligoprogressive disease. Methods: Single-institution retrospective analysis of 60 NSCLC patients with 62 discrete lesions treated with SBRT between 2008 and 2017. Patients were stratified into three groups, including early stage, locally recurrent, and oligoprogressive disease. Group 1 included early stage local disease with no prior local therapy. Group 2 included locally recurrent disease after local treatment of a primary lesion, and group 3 included regional or well-controlled distant metastatic disease receiving SBRT for a treatment naive lung lesion (oligoprogressive disease). Patient/tumor characteristics and adverse effects were recorded. Local failure free survival (LFFS), progression free survival (PFS), and overall survival (OS) were estimated using the Kaplan Meier method. Results: At median follow-up of 34 months, 67% of the study population remained alive. The estimated 3-year LFFS for group 1, group 2, and group 3 patients was 95% (95% CI: 86%-100%), 82%(62% - 100%), and 83% (58-100%), respectively. The estimated 3-year PFS was 59% (42-83%), 40% (21%-78%), and 33% (12%-95%), and the estimated 3-year OS was 58% (41-82%), 60% (37-96%), and 58% (31-100%)), respectively for each group. When adjusted for age and size of lesion, no significant difference in OS, LFFS, and PFS emerged between groups (p > 0.05). No patients experienced grade 3 to 5 toxicity. Eighteen patients (29%) experienced grade 1 to 2 toxicity. The most common toxicities reported were cough and fatigue. Conclusions: Our data demonstrates control rates in group 1 patients comparable to historical controls. Our study also reveals comparable clinical results for SBRT in the treatment of NSCLC by demonstrating similar rates of LFFS and OS in group 2 and group 3 patients with locally recurrent and treatment naïve lung lesion with well-controlled distant metastatic disease.

3.
Radiat Res ; 194(6): 587-593, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853343

RESUMO

It is well known that molecular oxygen is a product of the radiolysis of water with high-linear energy transfer (LET) radiation, which is distinct from low-LET radiation wherein O2 radiolytic yield is negligible. Since O2 is a powerful radiosensitizer, this fact is of practical relevance in cancer therapy with energetic heavy ions, such as carbon ions. It has recently been discovered that large doses of ionizing radiation delivered to tumors at very high dose rates (i.e., in a few milliseconds) have remarkable benefits in sparing healthy tissue while preserving anti-tumor activity compared to radiotherapy delivered at conventional, lower dose rates. This new method is called "FLASH radiotherapy" and has been tested using low-LET radiation (i.e., electrons and photons) in various pre-clinical studies and recently in a human patient. Although the exact mechanism(s) underlying FLASH are still unclear, it has been suggested that radiation delivered at high dose rates spares normal tissue via oxygen depletion. In addition, heavy-ion radiation achieves tumor control with reduced normal tissue toxicity due to its favorable physical depth-dose profile and increased radiobiological effectiveness in the Bragg peak region. To date, however, biological research with energetic heavy ions delivered at ultra-high dose rates has not been performed and it is not known whether heavy ions are suitable for FLASH radiotherapy. Here we present the additive or even synergistic advantages of integrating the FLASH dose rates into carbon-ion therapy. These benefits result from the ability of heavy ions at high LET to generate an oxygenated microenvironment around their track due to the occurrence of multiple (mainly double) ionization of water. This oxygen is abundant immediately in the tumor region where the LET of the carbon ions is very high, near the end of the carbon-ion path (i.e., in the Bragg peak region). In contrast, in the "plateau" region of the depth-dose distribution of ions (i.e., in the normal tissue region), in which the LET is significantly lower, this generation of molecular oxygen is insignificant. Under FLASH irradiation, it is shown that this early generation of O2 extends evenly over the entire irradiated tumor volume, with concentrations estimated to be several orders of magnitude higher than the oxygen levels present in hypoxic tumor cells. Theoretically, these results indicate that FLASH radiotherapy using carbon ions would have a markedly improved therapeutic ratio with greater toxicity in the tumor due to the generation of oxygen at the spread-out Bragg peak.


Assuntos
Carbono/metabolismo , Neoplasias/metabolismo , Neoplasias/radioterapia , Oxigênio/metabolismo , Radioterapia/métodos , Humanos , Método de Monte Carlo , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Cancer Res ; 18(8): 1189-1201, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32321766

RESUMO

The Crk adaptor protein, a critical modifier of multiple signaling pathways, is overexpressed in many cancers where it contributes to tumor progression and metastasis. Recently, we have shown that Crk interacts with the peptidyl prolyl cis-trans isomerase, Cyclophilin A (CypA; PP1A) via a G219P220Y221 (GPY) motif in the carboxyl-terminal linker region of Crk, thereby delaying pY221 phosphorylation and preventing downregulation of Crk signaling. Here, we investigate the physiologic significance of the CypA/Crk interaction and query whether CypA inhibition affects Crk signaling in vitro and in vivo. We show that CypA, when induced under conditions of hypoxia, regulates Crk pY221 phosphorylation and signaling in cancer cell lines. Using nuclear magnetic resonance spectroscopy, we show that CypA binds to the Crk GPY motif via the catalytic PPII domain of CypA, and small-molecule nonimmunosuppressive inhibitors of CypA (Debio-025) disrupt the CypA-CrkII interaction and restores phosphorylation of Crk Y221. In cultured cell lines, Debio-025 suppresses cell migration, and when administered in vivo in an orthotopic model of triple-negative breast cancer, Debio-025 showed antitumor efficacy either alone or in combination with anti-PD-1 mAb, reducing both tumor volume and metastatic lung dispersion. Furthermore, when analyzed by NanoString immune profiling, treatment of Debio-025 with anti-PD-1 mAb increased both T-cell signaling and innate immune signaling in tumor microenvironment. IMPLICATIONS: These data suggest that pharmacologic inhibition of CypA may provide a promising and unanticipated consequence in cancer biology, in part by targeting the CypA/CrkII axis that regulates cell migration, tumor metastasis, and host antitumor immune evasion.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Ciclosporina/administração & dosagem , Inibidores de Checkpoint Imunológico/administração & dosagem , Peptidilprolil Isomerase/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Modelos Moleculares , Metástase Neoplásica , Peptidilprolil Isomerase/química , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Proto-Oncogênicas c-crk/química , Análise de Sequência de RNA , Microambiente Tumoral/efeitos dos fármacos
5.
Cell Commun Signal ; 18(1): 21, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033611

RESUMO

BACKGROUND: Glioblastoma multiforme is an aggressive primary brain tumor that is characterized by local invasive growth and resistance to therapy. The role of the microenvironment in glioblastoma invasiveness remains unclear. While carcinomas release CD147, a protein that signals for increased matrix metalloproteinase (MMP) release by fibroblasts, glioblastoma does not have a significant fibroblast component. We hypothesized that astrocytes release MMPs in response to CD147 contained in glioblastoma-derived extracellular vesicles (EVs) and that ionizing radiation, part of the standard treatment for glioblastoma, enhances this release. METHODS: Astrocytes were incubated with EVs released by irradiated or non-irradiated human glioblastoma cells wild-type, knockdown, or knockout for CD147. Levels of CD147 in glioblastoma EVs and MMPs secreted by astrocytes were quantified. Levels of proteins in the mitogen activated protein kinase (MAPK) pathway, which can be regulated by CD147, were measured in astrocytes incubated with EVs from glioblastoma cells wild-type or knockdown for CD147. Immunofluorescence was performed on the glioblastoma cells to identify changes in CD147 localization in response to irradiation, and to confirm uptake of the EVs by astrocytes. RESULTS: Immunoblotting and mass spectrometry analyses showed that CD147 levels in EVs were transiently increased when the EVs were from glioblastoma cells that were irradiated with γ rays. Specifically, the highly-glycosylated 45 kDa form of CD147 was preferentially present in the EVs relative to the cells themselves. Immunofluorescence demonstrated that astrocytes incorporate glioblastoma EVs and subsequently increase their secretion of active MMP9. The increase was greater if the EVs were from irradiated glioblastoma cells. Testing MAPK pathway activation, which also regulates MMP expression, showed that JNK signaling, but not ERK1/2 or p38, was increased in astrocytes incubated with EVs from irradiated compared to non-irradiated glioblastoma cells. Knockout of CD147 in glioblastoma cells blocked the increased JNK signaling and the rise in secreted active MMP9 levels. CONCLUSIONS: The results support a tumor microenvironment-mediated role of CD147 in glioblastoma invasiveness, and reveal a prominent role for ionizing radiation in enhancing the effect. They provide an improved understanding of glioblastoma intercellular signaling in the context of radiotherapy, and identify pathways that can be targeted to reduce tumor invasiveness. Video abstract.


Assuntos
Astrócitos/metabolismo , Basigina/metabolismo , Neoplasias Encefálicas/metabolismo , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Radiação Ionizante , Astrócitos/patologia , Astrócitos/ultraestrutura , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/ultraestrutura , Linhagem Celular Tumoral , Vesículas Extracelulares/efeitos da radiação , Vesículas Extracelulares/ultraestrutura , Glioblastoma/patologia , Glioblastoma/ultraestrutura , Humanos , Invasividade Neoplásica , Proteômica , Transdução de Sinais , Regulação para Cima
6.
Radiat Res ; 193(1): 1-4, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657670

RESUMO

The goal of radiation therapy is to provide the highest probability of tumor control while minimizing normal tissue toxicity. Recently, it has been discovered that ultra-high dose rates of ionizing radiation may preferentially spare normal tissue over tumor tissue. This effect, referred to as FLASH radiotherapy, has been observed in various animal models as well as, more recently, in a human patient. This effect may be related to the cell sparing found in vitro at ultra-high dose rates of photons and electrons dating back to the 1960s. Conditions representative of physiologic oxygen were found to be essential for this process to occur. However, there is no conclusive data on whether this effect occurs with protons, as all results to date have been in cells irradiated at ambient oxygen conditions. There have been no ultra-high dose-rate experiments with heavy ions, which would be relevant to the implementation of FLASH to carbon-ion therapy. These basic science results are critical in guiding this rapidly advancing field, since clinical particle therapy machines capable of FLASH dose rates have already been promoted for protons. To help ensure FLASH radiotherapy is reliable and maximally effective, the radiobiology must keep ahead of the clinical implementation to help guide it. In this context, in vitro and in vivo proton and heavy ion experiments involving FLASH dose rates need to be performed to evaluate not only short-term consequences, but also sequelae related to long-term health risks. Critical to these future studies is consideration of relevant oxygen tensions at the time of irradiation, as well as appropriate in silico modeling to assist in understanding the initial physicochemical events.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Doses de Radiação , Linhagem Celular , Humanos , Dosagem Radioterapêutica
7.
Dev Neurosci ; 40(4): 312-324, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30336480

RESUMO

Neural stem cells are attracting enormous attention in regenerative medicine due to their ability to self-renew and differentiate into the cell lineages that constitute the central nervous system. However, little is known about the mechanism underlying the regulation of their redox environment, which is essential for homeostatic cellular functions. The redox-modulated c-Jun N-terminal kinases (JNK) are a molecular switch in stress signal transduction and are involved in numerous brain functions. Using a selective but broad-spectrum inhibitor of JNK 1/2/3, we investigated the role of JNK in regulating the levels of reactive oxygen species in mitochondria, mitochondrial membrane potential, viability, proliferation and lineage alterations in human H9-derived neural stem/progenitor cells (NSPs). Relative to diluent control, incubation of the NSPs for 24 h with SP600125, an anthrapyrazolone inhibitor of JNK, resulted in increased abundance of mitochondrial superoxide radicals (p < 0.05), concomitant with decreases in mitochondrial membrane potential (p < 0.001), while maintaining a consistent and stable mitochondrial mass. Whereas H9-derived NSPs collectively express Nestin, a marker for neural stem cells, a panel of cell surface markers analyzed by flow cytometry revealed that they are a heterogeneous population that sustains this diversity after JNK inhibition. In addition, the levels of nuclear forkhead homeobox type O3a (FoxO3a), a regulator of redox homeostasis, decreased, which was associated with a decrease in overall cell viability as measured by Annexin V staining (p < 0.001), and supported by an increased level of cleaved Poly-ADP-ribose polymerase and decreased survivin expression. However, staining with the proliferation marker, Ki67, revealed the presence of a significant percentage of proliferating cells in the treated population. Together, the results support a role for JNK in the redox-homeostasis and fate of NSPs. Identifying regulators of the cellular redox environment will enhance our understanding of the mechanisms that modulate neural stem cell functions and optimize therapeutic applications targeting JNK.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
8.
Radiat Res ; 188(2): 221-234, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28541775

RESUMO

The treatment of cancer using targeted radionuclide therapy is of interest to nuclear medicine and radiation oncology because of its potential for killing tumor cells while minimizing dose-limiting toxicities to normal tissue. The ionizing radiations emitted by radiopharmaceuticals deliver radiation absorbed doses over protracted periods of time with continuously varying dose rates. As targeted radionuclide therapy becomes a more prominent part of cancer therapy, accurate models for estimating the biologically effective dose (BED) or equieffective dose (EQD2α/ß) will become essential for treatment planning. This study examines the radiobiological impact of the dose rate increase half-time during the uptake phase of the radiopharmaceutical. MDA-MB-231 human breast cancer cells and V79 Chinese hamster lung fibroblasts were irradiated chronically with 662 keV γ rays delivered with time-varying dose rates that are clinically relevant. The temporal dose-rate patterns were: 1. acute, 2. exponential decrease with a half-time of 64 h (Td = 64 h), 3. initial exponential increase to a maximum (half time Ti = 2, 8 or 24 h) followed by exponential decrease (Td = 64 h). Cell survival assays were conducted and surviving fractions were determined. There was a marked reduction in biological effect when Ti was increased. Cell survival data were tested against existing dose-response models to assess their capacity to predict response. Currently accepted models that are used in radiation oncology overestimated BED and EQD2α/ß at low-dose rates and underestimated them at high-dose rates. This appears to be caused by an adaptive response arising as a consequence of the initial low-dose-rate phase of exposure. An adaptive response function was derived that yields more accurate BED and EQD2α/ß values over the spectrum of dose rates and absorbed doses delivered. Our experimental data demonstrate a marked increase in cell survival when the dose-rate-increase half-time is increased, thereby suggesting an adaptive response arising as a consequence of this phase of exposure. We have modified conventional radiobiological models used in the clinic for brachytherapy and external beams of radiation to account for this phenomenon and facilitate their use for treatment planning in targeted radionuclide therapy.


Assuntos
Radioisótopos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Modelos Biológicos , Radiobiologia
9.
ASN Neuro ; 8(4)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27511909

RESUMO

Harmful effects that alter the homeostasis of neural stem or progenitor cells (NSPs) can affect regenerative processes in the central nervous system. We investigated the effect of soluble factors secreted by control or (137)Cs-γ-irradiated glioblastoma or medulloblastoma cells on redox-modulated endpoints in recipient human NSPs. Growth medium harvested from the nonirradiated brain tumor cells, following 24 h of growth, induced prominent oxidative stress in recipient NSPs as judged by overall increases in mitochondrial superoxide radical levels (p < .001), activation of c-jun N-terminal kinase, and decrease in the active form of FoxO3a. The induced oxidative stress was associated with phosphorylation of p53 on serine 15, a marker of DNA damage, induction of the cyclin-cyclin dependent kinase inhibitors p21(Waf1) and p27(Kip1), and perturbations in cell cycle progression (p < .001). These changes were also associated with increased apoptosis as determined by enhanced annexin V staining (p < .001) and caspase 8 activation (p < .05) and altered expression of critical regulators of self-renewal, proliferation, and differentiation. Exposure of the tumor cells to radiation only slightly altered the induced oxidative changes in the bystander NSPs, except for medium from irradiated medulloblastoma cells that was more potent at inducing apoptosis in the NSPs than medium from nonirradiated cells (p < .001). The elucidation of such stressful bystander effects provides avenues to understand the biochemical events underlying the development or exacerbation of degenerative outcomes associated with brain cancers. It is also relevant to tissue culture protocols whereby growth medium conditioned by tumor cells is often used to support the growth of stem cells.


Assuntos
Efeito Espectador/fisiologia , Glioblastoma/química , Meduloblastoma/química , Células-Tronco Neurais/fisiologia , Estresse Oxidativo/fisiologia , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Transformada , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Glioblastoma/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Meduloblastoma/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo
10.
Sensors (Basel) ; 16(8)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527184

RESUMO

Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450-550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8-2.7 µm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3-10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices.

11.
Health Phys ; 110(3): 249-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808874

RESUMO

The health risks to humans and non-human biota exposed to low dose ionizing radiation remain ambiguous and are the subject of intense debate. The need to establish risk assessment standards based on the mechanisms underlying low-level radiation exposure has been recognized by regulatory agencies as critical to adequately protect people and to make the most effective use of national resources. Here, the authors briefly review evidence showing that the molecular and biochemical changes induced by low doses of radiation differ from those induced by high doses. In particular, an array of redundant and inter-related mechanisms act in both prokaryotes and eukaryotes to restore DNA integrity following exposures to relatively low doses of sparsely ionizing radiation. Furthermore, the radiation-induced protective mechanisms often overcompensate and minimize the mutagenic potential of the byproducts of normal oxidative metabolism. In contrast to adaptive protection observed at low doses of sparsely ionizing radiation, there is evidence that even a single nuclear traversal by a densely ionizing particle track can trigger harmful effects that spread beyond the traversed cell and induce damaging effects in the nearby bystander cells. In vivo studies examining whether exposure to low dose radiation at younger age modulates the latency of expression of age-related diseases such as cancer, together with studies on the role of genetic susceptibility, will further illuminate the magnitude of risk of exposure to low dose radiation.


Assuntos
Dano ao DNA/fisiologia , Estresse Oxidativo/efeitos da radiação , Exposição à Radiação/efeitos adversos , Lesões por Radiação/etiologia , Lesões por Radiação/fisiopatologia , Radiação Ionizante , Animais , Relação Dose-Resposta à Radiação , Medicina Baseada em Evidências , Humanos , Modelos Biológicos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...