Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400546, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037891

RESUMO

Carbon porous materials containing nitrogen functionalities and encapsulated iron-based active sites have been suggested as electrocatalysts for energy conversion, however their applications to the hydrogenation of organic substrates via electrocatalytic hydrogenation (ECH) remain unexplored. Herein, we report on a Fe@C:N material synthesized with an adapted annealing procedure and tested as electrocatalyst for the hydrogenation of benzaldehyde. Using different concentrations of the organic, and electrolysis coupled to gas chromatography experiments, we demonstrate that it is possible to use such architectures for the ECH of unsaturated organics. Potential control experiments show that ECH faradaic efficiencies >70% are possible in acid electrolytes, while maintaining selectivity for the alcohol over the pinacol dimerization product. Estimates of product formation rates and turnover frequency (TOF) values suggest that these carbon-encapsulated architectures can achieve competitive performance in acid electrolytes relative to both base and precious metal electrodes.

2.
ACS Appl Energy Mater ; 6(16): 8607-8615, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37654435

RESUMO

Identifying the active site of catalysts for the oxygen evolution reaction (OER) is critical for the design of electrode materials that will outperform the current, expensive state-of-the-art catalyst, RuO2. Previous work shows that mixed Mn/Ru oxides show comparable performances in the OER, while reducing reliance on this expensive and scarce Pt-group metal. Herein, X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) are performed on mixed Mn/Ru oxide materials for the OER to understand structural and chemical changes at both metal sites during oxygen evolution. The results show that the Mn-content affects both the oxidation state and local coordination environment of Ru sites. Operando XAS experiments suggest that the presence of MnOx might be essential to achieve high activity likely by facilitating changes in the O-coordination sphere of Ru centers.

3.
Nat Commun ; 14(1): 374, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690615

RESUMO

Pseudocapacitive charge storage in Ti3C2Tx MXenes in acid electrolytes is typically described as involving proton intercalation/deintercalation accompanied by redox switching of the Ti centres and protonation/deprotonation of oxygen functional groups. Here we conduct nanoscale electrochemical measurements in a unique experimental configuration, restricting the electrochemical contact area to a small subregion (0.3 µm2) of a monolayer Ti3C2Tx flake. In this unique configuration, proton intercalation into interlayer spaces is not possible, and surface processes are isolated from the bulk processes, characteristic of macroscale electrodes. Analysis of the pseudocapacitive response of differently sized MXene flakes indicates that entire MXene flakes are charged through electrochemical contact of only a small basal plane subregion, corresponding to as little as 3% of the flake surface area. Our observation of pseudocapacitive charging outside the electrochemical contact area is suggestive of a fast transport of protons mechanism across the MXene surface.


Assuntos
Oxigênio , Prótons , Eletrodos
4.
ACS Biomater Sci Eng ; 8(10): 4311-4326, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36127820

RESUMO

Additive manufacturing (AM) has emerged as a disruptive technique within healthcare because of its ability to provide personalized devices; however, printed metal parts still present surface and microstructural defects, which may compromise mechanical and biological interactions. This has made physical and/or chemical postprocessing techniques essential for metal AM devices, although limited fundamental knowledge is available on how alterations in physicochemical properties influence AM biological outcomes. For this purpose, herein, powder bed fusion Ti-6Al-4V samples were postprocessed with three industrially relevant techniques: polishing, passivation, and vibratory finishing. These surfaces were thoroughly characterized in terms of roughness, chemistry, wettability, surface free energy, and surface ζ-potential. A significant increase in Staphylococcus epidermidis colonization was observed on both polished and passivated samples, which was linked to high surface free energy donor γ- values in the acid-base, γAB component. Early osteoblast attachment and proliferation (24 h) were not influenced by these properties, although increased mineralization was observed for both these samples. In contrast, osteoblast differentiation on stainless steel was driven by a combination of roughness and chemistry. Collectively, this study highlights that surface free energy is a key driver between AM surfaces and cell interactions. In particular, while low acid-base components resulted in a desired reduction in S. epidermidis colonization, this was followed by reduced mineralization. Thus, while surface free energy can be used as a guide to AM device development, optimization of bacterial and mammalian cell interactions should be attained through a combination of different postprocessing techniques.


Assuntos
Ligas , Aço Inoxidável , Animais , Mamíferos , Pós , Titânio/química
5.
Bioelectrochemistry ; 142: 107937, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34474203

RESUMO

Nanostructured electrocatalysts for microbial fuel cell air-cathodes were obtained via use of conductive carbon blacks for the synthesis of high performing 3D conductive networks. We used two commercially available nanocarbons, Black Pearls 2000 and multiwalled carbon nanotubes, as conductive scaffolds for the synthesis of nanocomposite electrodes by combining: a hydrothermally carbonized resin, a sacrificial polymeric template, a nitrogenated organic precursor and iron centers. The resulting materials are micro-mesoporous, possess high specific surface area and display N-sites (N/C of 3-5 at%) and Fe-centers (Fe/C < 1.5at.%) at the carbon surface as evidenced from characterization methods. Voltammetry studies of oxygen reduction reaction activity were carried out at neutral pH, which is relevant to microbial fuel cell applications, and activity trends are discussed in light of catalyst morphology and composition. Tests of the electrocatalyst using microbial fuel cell devices indicate that optimization of the nanocarbon scaffold for the Pt-free carbon-based electrocatalysts results in maximum power densities that are 25% better than those of Pt/C cathodes, at a fraction of the materials costs. Therefore, the proposed Fe/N-carbon catalysts are promising and sustainable high-performance cathodic materials for microbial fuel cells.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Nanotubos de Carbono , Catálise , Condutividade Elétrica , Nanotubos de Carbono/química , Nanotubos de Carbono/microbiologia
6.
RSC Chem Biol ; 2(4): 1004-1020, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458822

RESUMO

Protein aggregation in biotherapeutics has been identified to increase immunogenicity, leading to immune-mediated adverse effects, such as severe allergic responses including anaphylaxis. The induction of anti-drug antibodies (ADAs) moreover enhances drug clearance rates, and can directly block therapeutic function. In this review, identified immune activation mechanisms triggered by protein aggregates are discussed, as well as physicochemical properties of aggregates, such as size and shape, which contribute to immunogenicity. Furthermore, factors which contribute to protein stability and aggregation are considered. Lastly, with these factors in mind, we encourage an innovative and multidisciplinary approach with regard to further research in the field, with the overall aim to avoid immunogenic aggregation in future drug development.

7.
Molecules ; 26(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34443344

RESUMO

Surface modification of electrodes with glycans was investigated as a strategy for modulating the development of electrocatalytic biofilms for microbial fuel cell applications. Covalent attachment of phenyl-mannoside and phenyl-lactoside adlayers on graphite rod electrodes was achieved via electrochemically assisted grafting of aryldiazonium cations from solution. To test the effects of the specific bio-functionalities, modified and unmodified graphite rods were used as anodes in two-chamber microbial fuel cell devices. Devices were set up with wastewater as inoculum and acetate as nutrient and their performance, in terms of output potential (open circuit and 1 kΩ load) and peak power output, was monitored over two months. The presence of glycans was found to lead to significant differences in startup times and peak power outputs. Lactosides were found to inhibit the development of biofilms when compared to bare graphite. Mannosides were found, instead, to promote exoelectrogenic biofilm adhesion and anode colonization, a finding that is supported by quartz crystal microbalance experiments in inoculum media. These differences were observed despite both adlayers possessing thickness in the nm range and similar hydrophilic character. This suggests that specific glycan-mediated bioaffinity interactions can be leveraged to direct the development of biotic electrocatalysts in bioelectrochemical systems and microbial fuel cell devices.


Assuntos
Fontes de Energia Bioelétrica , Polissacarídeos/química , Adesividade , Biofilmes , Eletrodos , Interações Hidrofóbicas e Hidrofílicas
8.
Front Chem ; 8: 576175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195066

RESUMO

In this study the application of porous carbon microparticles for the transport of a sparingly soluble material into cells is demonstrated. Carbon offers an intrinsically sustainable platform material that can meet the multiple and complex requirements imposed by applications in biology and medicine. Porous carbon microparticles are attractive as they are easy to handle and manipulate and combine the chemical versatility and biocompatibility of carbon with a high surface area due to their highly porous structure. The uptake of fluorescently labeled microparticles by cancer (HeLa) and normal human embryonic Kidney (HEK 293) cells was monitored by confocal fluorescence microscopy. In this way the influence of particle size, surface functionalization and the presence of transfection agent on cellular uptake were studied. In the presence of transfection agent both large (690 nm) and small microparticles (250 nm) were readily internalized by both cell lines. However, in absence of the transfection agent the uptake was influenced by particle size and surface PEGylation with the smaller nanoparticle size being delivered. The ability of microparticles to deliver a fluorescein dye model cargo was also demonstrated in normal (HEK 293) cell line. Taken together, these results indicate the potential use of these materials as candidates for biological applications.

9.
Front Chem ; 8: 593932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240854

RESUMO

Nitrogen-free amorphous carbon thin films prepared via sputtering followed by graphitization, were used as precursor materials for the creation of N-doped carbon electrodes with varying degrees of amorphization. Incorporation of N-sites was achieved via nitrogen plasma treatments which resulted in both surface functionalization and amorphization of the carbon electrode materials. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to monitor composition and carbon organization: results indicate incorporation of predominantly pyrrolic-N sites after relatively short treatment cycles (5 min or less), accompanied by an initial etching of amorphous regions followed by a slower process of amorphization of graphitized clusters. By leveraging the difference in the rate of these two processes it was possible to investigate the effects of chemical N-sites and C-defect sites on their electrochemical response. The materials were tested as metal-free electrocatalysts in the oxygen reduction reaction (ORR) in alkaline conditions. We find that the introduction of predominantly pyrrolic-N sites via plasma modification results in improvements in selectivity in the ORR, relative to the nitrogen-free precursor material. Introduction of defects through prolonged plasma exposure has a more pronounced and beneficial effect on ORR descriptors than introduction of N-sites alone, leading to both increased onset potentials, and reduced hydroperoxide yields relative to the nitrogen-free carbon material. Our results suggest that increased structural disorder/heterogeneity results in the introduction of carbon sites that might either serve as main activity sites, or that enhance the effects of N-functionalities in the ORR via synergistic effects.

10.
Bioelectrochemistry ; 136: 107621, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32791485

RESUMO

Grafting of aryldiazonium cations bearing a p-mannoside functionality over microbial fuel cell (MFC) anode materials was performed to investigate the ability of aryl-glycoside layers to regulate colonisation by biocatalytic biofilms. Covalent attachment was achieved via spontaneous reactions and via electrochemically-assisted grafting using potential step experiments. The effect of different functionalisation protocols on MFC performance is discussed in terms of changes in wettability, roughness and electrochemical response of modified electrodes. Water contact angle measurements (WCA) show that aryl-mannoside grafting yields a significant increase in hydrophilic character. Surface roughness determinations via atomic force microscopy (AFM) suggest a more disordered glycan adlayer when electrografting is used to facilitate chemisorption. MFCs were used as living sensors to successfully test the coated electrodes: the response of the MFCs in terms of start-up time was accelerated when compared to that of MFC equipped with non-modified electrodes, this suggests a faster development of a mature biofilm community resulting from aryldiazonium modifications, as confirmed by cyclic voltammetry of MFC anodes. These results therefore indicate that modification with glycans offers a bioinspired route to accelerating biofilm colonisation without any adverse effects on final MFC outputs.


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica , Eletrodos , Microbiota , Biofilmes , Eletricidade , Glicosilação , Propriedades de Superfície
11.
ACS Appl Bio Mater ; 3(2): 997-1007, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019301

RESUMO

Surface active phospholipids are present in fluids of biological relevance, and their adsorption may condition and determine the response of carbon and nanocarbon surfaces when they are immersed in physiological media. In this work, the adsorption and assembly of liposomes at carbon interfaces were investigated to understand the effect of surface termination on the extent and mode of assembly of lipid aggregates. Liposomes of natural lipids were prepared from a mixture of phosphatidylcholine (PC) and phosphatidylserine (PS), and their hydrodynamic size and surface zeta potential were studied as a function of pH. Adsorption was investigated at graphitic amorphous carbon surfaces (a-C) and at these surfaces after oxidative treatments (a-C:O). Infrared surface spectroscopy experiments show that PC/PS liposomes adsorb at a-C surfaces exclusively, independently of pH, while no adsorption is observed at a-C:O materials. Nanogravimetry and fluorescence imaging experiments in solution indicate that adsorption at a-C occurs as supported intact vesicles. Interestingly, PC/PS adsorption at oxidized surfaces was observed only in the presence of a dication such as Ca2+, a behavior that was attributed to screening of surface-liposome repulsive electrostatic interactions. Vesicle rupture experiments show that lipids adsorb as monolayers on graphitic surfaces, whereas adsorbate structures correspond to bilayers in the case of oxidized carbons. These results therefore demonstrate a strong dependence of adsorbate structure on both carbon chemistry and buffer composition. These findings have important implications for the design of carbon nanoparticles, carbon electrodes, or carbon coatings for applications in biology and medicine.

12.
Small ; 15(48): e1902081, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31210002

RESUMO

Metal-free carbon electrodes with well-defined composition and smooth topography are prepared via sputter deposition followed by thermal treatment with inert and reactive gases. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy show that three carbons of similar N/C content that differ in N-site composition are thus prepared: an electrode consisting of almost exclusively graphitic-N (NG ), an electrode with predominantly pyridinic-N (NP ), and one with ≈1:1 NG :NP composition. These materials are used as model systems to investigate the activity of N-doped carbons in the oxygen reduction reaction (ORR) using voltammetry. Results show that selectivity toward 4e-reduction of O2 is strongly influenced by the NG /NP site composition, with the material possessing nearly uniform NG /NP composition being the only one yielding a 4e-reduction. Computational studies on model graphene clusters are carried out to elucidate the effect of N-site homogeneity on the reaction pathway. Calculations show that for pure NG -doping or NP -doping of model graphene clusters, adsorption of hydroperoxide and hydroperoxyl radical intermediates, respectively, is weak, thus favoring desorption prior to complete 4e-reduction to hydroxide. Clusters with mixed NG /NP sites display synergistic effects, suggesting that co-presence of these sites improves activity and selectivity by achieving high theoretical reduction potentials while facilitating retention of intermediates.

13.
RSC Adv ; 9(7): 4063-4071, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518062

RESUMO

Nitrogen incorporated carbon materials play an important role in electrochemical energy conversion technologies from fuel cells to capacitive storage devices. This work investigates the effects of nitrogen incorporation on capacitance, work function and semiconductor properties of amorphous carbon thin film electrodes. Nitrogenated electrodes (a-C:N) electrodes were synthesized via magnetron sputtering and characterized using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), Raman spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). EIS was carried in both aqueous (0.1 M KCl) and organic (0.1 M TBAPF6/acetonitrile) electrolytes to discriminate between pseudocapacitive contributions and changes to semiconductor properties of the materials arising from structural and chemical disruption of the graphitic carbon scaffold. Raman and UPS spectroscopy both suggest that nitrogen incorporation increases the metallic character of the disordered carbon matrix at low-intermediate concentrations, whereas further nitrogen incorporation results in significantly more defective carbon with small graphitic cluster size. EIS studies in 0.1 M KCl indicate that the capacitance of a-C:N electrodes increases relative to nitrogen-free a-C electrodes due to a combination of microroughness and pseudocapacitive contributions in parallel to those of the double layer capacitance. Results in 0.1 M TBAPF6 in acetonitrile which are dominated by the interfacial capacitance, show that initial nitrogen incorporation into the disordered carbon scaffold compensates for p-type properties in the disordered carbon matrix, resulting in an increase in metallic character. Greater levels of nitrogenation, are instead disruptive and increase defect density while decreasing the double layer capacitance.

14.
ACS Appl Bio Mater ; 1(3): 825-832, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34996174

RESUMO

A mild and efficient surface modification protocol for the preparation of ß-cyclodextrin (ßCD) modified surfaces through aryldiazonium-mediated grafting is reported. Monosubstituted 6-O-aminophenol-ß-cyclodextrin (amßCD) was synthesized through a three-step protocol. This compound was found to form supramolecular aggregates in aqueous solutions at relatively low concentrations via cavity-directed self-assembly. Disruption of these supramolecular structures through judicious choice of solvent was found to be essential for the formation of the reactive aryldiazonium species from the amino-phenolic precursor and for spontaneous surface grafting from aqueous solutions. Cyclodextrin thin films were prepared on carbon macroscopic substrates and electrodes and were characterized via infrared reflectance absorption spectroscopy (IRRAS), cyclic voltammetry, and water contact angle measurements. Protein adsorption studies demonstrated that ßCD adlayers reduced nonspecific protein adsorption. ßCD moieties in adlayers can be used nonetheless for specific host-guest complexation and are grafted at the surface with monolayer coverage (1.2 × 10-10 mol cm-2) as demonstrated via experiments using ferrocene, a redox probe. Finally, cyclodextrin covalent immobilization was demonstrated also on stainless steel and polyamide samples, two substrates with wide ranging technological applications.

15.
Langmuir ; 33(17): 4198-4206, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28398737

RESUMO

Various forms of carbon are known to perform well as biomaterials in a variety of applications and an improved understanding of their interactions with biomolecules, cells, and tissues is of interest for improving and tailoring their performance. Nanoplasmonic sensing (NPS) has emerged as a powerful technique for studying the thermodynamics and kinetics of interfacial reactions. In this work, the in situ adsorption of two proteins, bovine serum albumin and fibrinogen, were studied at carbon surfaces with differing chemical and optical properties using nanoplasmonic sensors. The carbon material was deposited as a thin film onto NPS surfaces consisting of 100 nm Au nanodisks with a localized plasmon absorption peak in the visible region. Carbon films were fully characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and spectroscopic ellipsometry. Two types of material were investigated: amorphous carbon (a-C), with high graphitic content and high optical absorptivity, and hydrogenated amorphous carbon (a-C:H), with low graphitic content and high optical transparency. The optical response of the Au/carbon NPS elements was modeled using the finite difference time domain (FDTD) method, yielding simulated analytical sensitivities that compare well with those observed experimentally at the two carbon surfaces. Protein adsorption was investigated on a-C and a-C:H, and the protein layer thicknesses were obtained from FDTD simulations of the expected response, yielding values in the 1.8-3.3 nm range. A comparison of the results at a-C and a-C:H indicates that in both cases fibrinogen layers are thicker than those formed by albumin by up to 80%.


Assuntos
Carbono/química , Fibrinogênio/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Ouro/química , Teste de Materiais/métodos , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
16.
Sci Rep ; 6: 24840, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27108562

RESUMO

Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.


Assuntos
Compostos de Diazônio/química , Nanoestruturas/química , Polissacarídeos/química , Próteses e Implantes/estatística & dados numéricos , Proteínas/metabolismo , Adsorção , Carbono/química , Modelos Químicos , Polissacarídeos/metabolismo , Proteínas/química , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 7(31): 17238-46, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26192984

RESUMO

Poly(ether sulfone) membranes (PES) were modified with biologically active monosaccharides and disaccharides using aryldiazonium chemistry as a mild, one-step, surface-modification strategy. We previously proposed the modification of carbon, metals, and alloys with monosaccharides using the same method; herein, we demonstrate modification of PES membranes and the effect of chemisorbed carbohydrate layers on their resistance to biofouling. Glycosylated PES surfaces were characterized using spectroscopic methods and tested against their ability to interact with specific carbohydrate-binding proteins. Galactose-, mannose-, and lactose-modified PES surfaces were exposed to Bovine Serum Albumin (BSA) solutions to assess unspecific protein adsorption in the laboratory and were found to adsorb significantly lower amounts of BSA compared to bare membranes. The ability of molecular carbohydrate layers to impart antifouling properties was further tested in the field via long-term immersive tests at a wastewater treatment plant. A combination of ATP content assays, infrared spectroscopic characterization and He-ion microscopy (HIM) imaging were used to investigate biomass accumulation at membranes. We show that, beyond laboratory applications and in the case of complex aqueous environments that are rich in biomass such as wastewater effluent, we observe significantly lower biofouling at carbohydrate-modified PES than at bare PES membrane surfaces.

18.
J Phys Chem A ; 116(5): 1435-44, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22117598

RESUMO

The solid state structures of three compounds that contain a perfluorinated chain, CF(3)(CF(2))(5)CH(2)CH(CH(3))CO(2)H, CF(3)(CF(2))(5)(CH(2))(4)(CF(2))(5)CF(3) and {CF(3)(CF(2))(5)CH(2)CH(2)}(3)P═O have been compared and a number of C-F···F-C and C-F···H-C interactions that are closer than the sum of the van der Waals radii have been identified. These interactions have been probed by a comprehensive computational chemistry investigation and the stabilizing energy between dimeric fragments was found to be 0.26-29.64 kcal/mol, depending on the type of interaction. An Atoms-in-Molecules (AIM) study has confirmed that specific C-F···F-C interactions are indeed present, and are not due simply to crystal packing. The weakly stabilizing nature of these interactions has been utilized in the physisorption of a selected number of compounds containing long chain perfluorinated ponytails onto a perfluorinated self-assembled monolayer, which has been characterized by IRRAS (Infrared Reflection Absorption Spectroscopy).

19.
Langmuir ; 27(21): 13029-36, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21919493

RESUMO

Self-assembled organic layers are an important tool for modifying surfaces in a range of applications in materials science. Covalent modification of metal surfaces with aryldiazonium cations has attracted much attention primarily because this reaction offers a route for spontaneously grafting a variety of aromatic moieties from solution with high yield. We have investigated the kinetics of this process by performing real-time, in situ nanogravimetric measurements. The spontaneous grafting of 4-nitrobenzene diazonium salts onto gold electrodes was studied via quartz crystal microbalance (QCM) from aqueous solutions of the salt at varying concentrations. The concentration dependence of the grafting rate within the first 10 min is best modeled by assuming a reversible adsorption process with free energy comparable to that reported for arylthiols self-assembled on gold. Multilayer formation was observed after extended grafting times and was found to be favored by increasing bulk concentrations of the diazonium salt. Modified gold surfaces were characterized ex situ with cyclic voltammetry, infrared reflection absorbance spectroscopy, and X-ray photoemission spectroscopy. Based on the experimentally determined free energy of adsorption and on the observed grafting rates, we discuss a proposed mechanism for aryldiazonium chemisorption.

20.
Langmuir ; 23(23): 11623-30, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17939694

RESUMO

We have used X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy, and field-emission scanning electron microscopy (SEM) to investigate the formation of single- and two-component molecular patterns by direct photochemical grafting of alkenes onto hydrogen-terminated diamond surfaces using sub-band gap 254 nm ultraviolet light. Trifluoroacetamide-protected 1-aminodec-1-ene (TFAAD) and 1-dodecene were used as model systems for grafting. Illumination with sub-band gap light can induce several different kinds of excitations, including creation of mobile electrons and holes in the bulk and creation of radicals at the surface and in the adjacent fluid, which induce grafting of the alkenes to the surface. SEM images of patterned molecular layers on nanocrystalline diamond surfaces reveal sharp transitions between functionalized and nonfunctionalized regions consistent with diffraction-limited excitation. However, identical experiments on type IIb single-crystal diamond yield a significantly more extended transition region in the molecular pattern. These data imply that the spatial resolution of the direct molecular photopatterning is affected by diffusion of charge carriers in the bulk of the diamond samples. The molecular contrast between surfaces with different terminations is consistent with the expected trends in molecular electron affinity. These results provide new mechanistic insights into the direct patterning and imaging of molecular monolayers on surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...