Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 157(3): 299-311, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22324374

RESUMO

The bone marrow contains specific microenvironmental stem cell niches that maintain haemopoiesis. CXCL12-expressing mesenchymal stromal cells are closely associated with the bone marrow sinusoidal endothelia, forming key elements of the haemopoietic stem cell niche, yet their ability to regulate endothelial function is not clearly defined. Given that the murine nestin(+) cell line, MS-5, provides a clonal surrogate bone marrow stromal niche capable of regulating both murine and human primitive haemopoietic stem/progenitor cell (HSC/HPC) fate in vitro, we hypothesized that MS-5 cells might also support new blood vessel formation and function. Here, for the first time, we demonstrate that this is indeed the case. Using proteome arrays, we identified HSC/HPC active angiogenic factors that are preferentially secreted by haemopoietic supportive nestin(+) MS-5 cells, including CXCL12 (SDF-1), NOV (CCN3), HGF, Angiopoietin-1 and CCL2 (MCP-1). Concentrating on CXCL12, we confirmed its presence in MS-5 conditioned media and demonstrated that its antagonist in receptor binding, AMD-3100, which mobilizes HSC/HPCs and endothelial progenitors from bone marrow, could significantly reduce MS-5 mediated human vasculogenesis in vitro, principally by regulating human endothelial cell migration. Thus, the clonal nestin(+) MS-5 murine bone marrow stromal cell line not only promotes human haemopoiesis but also induces human vasculogenesis, with CXCL12 playing important roles in both processes.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/fisiologia , Indutores da Angiogênese/metabolismo , Animais , Células da Medula Óssea/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/fisiologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Humanos , Camundongos , Proteômica/métodos
2.
Angiogenesis ; 14(3): 381-92, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21720855

RESUMO

As umbilical cord blood (UCB) is a rich source of endothelial colony-forming cells (ECFC), our aim was twofold: (1) to examine potential obstetric selection criteria for achieving the highest ECFC yields from UCB units, and (2) to determine whether transient storage temperatures of fresh UCB and cryopreservation of UCB units affected ECFC yield and function. ECFC quality was assessed before and after cryopreservation by their clonogenic proliferative potential. Of the 20 factors examined, placental weight was the only statistically significant obstetric factor that predicted ECFC frequency in UCB. Studies on the effects of storage revealed that transient storage of fresh UCB at 4°C reduced ECFC yield compared with storage at 22°C, while cryopreservation of UCB MNCs significantly reduced ECFC recoveries. To our knowledge, this is the first demonstration that placental weight and temperature of storage prior to processing or culture have significant effects on ECFC frequency in UCB. Our studies further support the evidence that cryopreservation of UCB MNCs compromises ECFC recovery.


Assuntos
Preservação de Sangue , Criopreservação , Parto Obstétrico , Células Endoteliais/citologia , Sangue Fetal/citologia , Células-Tronco/citologia , Células Endoteliais/metabolismo , Feminino , Sangue Fetal/metabolismo , Humanos , Recém-Nascido , Masculino , Tamanho do Órgão , Placenta/citologia , Placenta/metabolismo , Gravidez , Células-Tronco/metabolismo , Fatores de Tempo
3.
Nucleic Acids Res ; 36(16): e100, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18632763

RESUMO

Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.


Assuntos
Antibióticos Antineoplásicos/análise , Adutos de DNA/análise , Doxorrubicina/análise , Espectrometria de Massas/métodos , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Adutos de DNA/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Humanos , Espectrometria de Massas/instrumentação , Aceleradores de Partículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...