Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 37(9): 1978-1988, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29990154

RESUMO

Optical coherence tomography (OCT) has revolutionized diagnosis and prognosis of ophthalmic diseases by visualization and measurement of retinal layers. To speed up the quantitative analysis of disease biomarkers, an increasing number of automatic segmentation algorithms have been proposed to estimate the boundary locations of retinal layers. While the performance of these algorithms has significantly improved in recent years, a critical question to ask is how far we are from a theoretical limit to OCT segmentation performance. In this paper, we present the Cramèr-Rao lower bounds (CRLBs) for the problem of OCT layer segmentation. In deriving the CRLBs, we address the important problem of defining statistical models that best represent the intensity distribution in each layer of the retina. Additionally, we calculate the bounds under an optimal affine bias, reflecting the use of prior knowledge in many segmentation algorithms. Experiments using in vivo images of human retina from a commercial spectral domain OCT system are presented, showing potential for improvement of automated segmentation accuracy. Our general mathematical model can be easily adapted for virtually any OCT system. Furthermore, the statistical models of signal and noise developed in this paper can be utilized for the future improvements of OCT image denoising, reconstruction, and many other applications.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Algoritmos , Humanos
2.
Biomed Opt Express ; 8(1): 16-37, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28101398

RESUMO

The peripheral retina of the human eye offers a unique opportunity for assessment and monitoring of ocular diseases. We have developed a novel wide-field (>70°) optical coherence tomography system (WF-OCT) equipped with wavefront sensorless adaptive optics (WSAO) for enhancing the visualization of smaller (<25°) targeted regions in the peripheral retina. We iterated the WSAO algorithm at the speed of individual OCT B-scans (~20 ms) by using raw spectral interferograms to calculate the optimization metric. Our WSAO approach with a 3 mm beam diameter permitted primarily low- but also high- order peripheral wavefront correction in less than 10 seconds. In preliminary imaging studies in five normal human subjects, we quantified statistically significant changes with WSAO correction, corresponding to a 10.4% improvement in average pixel brightness (signal) and 7.0% improvement in high frequency content (resolution) when visualizing 1 mm (~3.5°) B-scans of the peripheral (>23°) retina. We demonstrated the ability of our WF-OCT system to acquire non wavefront-corrected wide-field images rapidly, which could then be used to locate regions of interest, zoom into targeted features, and visualize the same region at different time points. A pilot clinical study was conducted on seven healthy volunteers and two subjects with prodromal Alzheimer's disease which illustrated the capability to image Drusen-like pathologies as far as 32.5° from the fovea in un-averaged volume scans. This work suggests that the proposed combination of WF-OCT and WSAO may find applications in the diagnosis and treatment of ocular, and potentially neurodegenerative, diseases of the peripheral retina, including diabetes and Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...