Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 407(1): 149-70, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21262234

RESUMO

Poly(ADP-ribose)polymerase-1 (PARP-1) is a highly abundant chromatin-associated enzyme present in all higher eukaryotic cell nuclei, where it plays key roles in the maintenance of genomic integrity, chromatin remodeling and transcriptional control. It binds to DNA single- and double-strand breaks through an N-terminal region containing two zinc fingers, F1 and F2, following which its C-terminal catalytic domain becomes activated via an unknown mechanism, causing formation and addition of polyadenosine-ribose (PAR) to acceptor proteins including PARP-1 itself. Here, we report a biophysical and structural characterization of the F1 and F2 fingers of human PARP-1, both as independent fragments and in the context of the 24-kDa DNA-binding domain (F1+F2). We show that the fingers are structurally independent in the absence of DNA and share a highly similar structural fold and dynamics. The F1+F2 fragment recognizes DNA single-strand breaks as a monomer and in a single orientation. Using a combination of NMR spectroscopy and other biophysical techniques, we show that recognition is primarily achieved by F2, which binds the DNA in an essentially identical manner whether present in isolation or in the two-finger fragment. F2 interacts much more strongly with nicked or gapped DNA ligands than does F1, and we present a mutational study that suggests origins of this difference. Our data suggest that different DNA lesions are recognized by the DNA-binding domain of PARP-1 in a highly similar conformation, helping to rationalize how the full-length protein participates in multiple steps of DNA single-strand breakage and base excision repair.


Assuntos
Quebras de DNA de Cadeia Simples , DNA/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Cromatina/metabolismo , Reparo do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Espectroscopia de Ressonância Magnética , Mutação/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Dedos de Zinco
2.
Nat Struct Biol ; 9(5): 375-80, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11927954

RESUMO

The hepatitis C virus (HCV) internal ribosome entry site (IRES) is recognized specifically by the small ribosomal subunit and eukaryotic initiation factor 3 (eIF3) before viral translation initiation. Using extensive mutagenesis and structure probing analysis, we show that the eIF3-binding domain of the HCV IRES contains an internal loop structure (loop IIIb) and an adjacent mismatched helix that are important for IRES-dependent initiation of translation. NMR studies reveal a unique three-dimensional structure for this internal loop that is conserved between viral isolates of varying primary sequence in this region. These data indicate that internal loop IIIb may be an attractive target for structure-based design of new antiviral agents.


Assuntos
Sequência Conservada , Hepacivirus/genética , Conformação de Ácido Nucleico , Fatores de Iniciação de Peptídeos/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribossomos/metabolismo , Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/genética , Regiões 5' não Traduzidas/metabolismo , Antivirais , Pareamento Incorreto de Bases , Sequência de Bases , Sítios de Ligação , Sequência Conservada/genética , Desenho de Fármacos , Genes Virais/genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação Puntual/genética , Fator de Iniciação 3 em Procariotos , Ligação Proteica , Biossíntese de Proteínas , RNA Viral/genética , Relação Estrutura-Atividade , Proteínas Virais/biossíntese , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...