Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
BMC Med Educ ; 22(1): 821, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447223

RESUMO

BACKGROUND: Students with developed self-regulated learning (SRL) skills demonstrate an ability to set individualized educational goals, select optimal learning strategies for reaching these goals, and reflect on overall progress. The primary aims of this study were to investigate first-year medical students' perceived utility of a self-regulated learning-informed intervention and to assess the impact of its implementation on students' intended use of SRL throughout medical school. METHODS: A two-part educational intervention focused on SRL skill development was carried out at Harvard Medical School during the start of the 2021 academic year. For the first component of the intervention, 169 first-year medical students engaged in an interactive class session structured around SRL concept videos, a brief lecture, small group discussions and individual reflection. Students completed pre- and post-intervention surveys which inquired about learners' current and anticipated application of SRL skills. During the second component of the intervention, 15 first-year medical students participated in a set of one-on-one academic SRL coaching sessions. All coaching participants completed follow-up semi-structured interviews. RESULTS: A statistically significant increase was observed between students' use of skills in all domains of self-regulated learning prior to the intervention and their anticipated use of these skills following the intervention. Prior to the intervention, 60.1% (n = 92) of students reported utilizing evidence-based learning strategies, compared to 92.8% (n = 142) of students (p < 0.001) who anticipated applying this SRL skills at the completion of the classroom session. Six core themes emerged from qualitative analysis of the post-intervention survey including learning plan development, accountability and progress tracking, goals for growth, engagement through active learning, routine reflection, and adapting to the curriculum. CONCLUSIONS: Both classroom-based learning sessions and one-on-one academic coaching programs are feasible approaches for encouraging the use of self-regulated learning techniques in the preclinical setting.


Assuntos
Tutoria , Estudantes de Medicina , Humanos , Faculdades de Medicina , Aprendizagem , Aprendizagem Baseada em Problemas
2.
Artigo em Inglês | MEDLINE | ID: mdl-34594468

RESUMO

While quantitative analytical skills have always been a part of modern biomedical training, the big data revolution and digital research environment have increased the importance of computational approaches for biomedical graduate education. To address this growing need, Ph.D. programs have explored ways to integrate quantitative training into their existing curricula. However, these attempts have been hindered by limitations on total instructional time, faculty perceptions, and scalability. Here, we describe a flipped approach that combined a preexisting online course with group problem solving sessions to effectively and efficiently teach biomedical Ph.D. students key concepts in the use of the Python programming language for research. Following the COVID-19 related shutdowns in March 2020, we successfully adapted this approach to an all-online version where the formerly in-person problem-solving sessions occurred in small groups over Zoom. We found that students in both in-person and remote flipped formats showed increased confidence using Python and related this to their thesis research. Following the shift to the fully remote format, the lack of a physically present instructor seemed to increase students' reliance on their classmates, which in turn promoted peer learning and support. This flexible, scalable approach to computational training may address the needs of many biomedical Ph.D. programs.

3.
J Extracell Vesicles ; 10(2): e12034, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33318779

RESUMO

The misfolding and fibrillization of the protein, α-synuclein (αsyn), is associated with neurodegenerative disorders referred to as the synucleinopathies. Understanding the mechanisms of αsyn misfolding is an important area of interest given that αsyn misfolding contributes to disease pathogenesis. While many studies report the ability of synthetic lipid membranes to modulate αsyn folding, there is little data pertaining to the mechanism(s) of this interaction. αSyn has previously been shown to associate with small lipid vesicles released by cells called extracellular vesicles (EVs) and it is postulated these interactions may assist in the spreading of pathological forms of this protein. Together, this presents the need for robust characterisation studies on αsyn fibrillization using biologically-derived vesicles. In this study, we comprehensively characterised the ability of lipid-rich small extracellular vesicles (sEVs) to alter the misfolding of αsyn induced using the Protein Misfolding Cyclic Amplification (PMCA) assay. The biochemical and biophysical properties of misfolded αsyn were examined using a range of techniques including: Thioflavin T fluorescence, transmission electron microscopy, analytical centrifugation and western immunoblot coupled with protease resistance assays and soluble/insoluble fractionation. We show that sEVs cause an acceleration in αsyn fibrillization and provide comprehensive evidence that this results in an increase in the abundance of mature insoluble fibrillar species. In order to elucidate the relevance of the lipid membrane to this interaction, sEV lipid membranes were modified by treatment with methanol, or a combination of methanol and sarkosyl. These treatments altered the ultrastructure of the sEVs without changing the protein cargo. Critically, these modified sEVs had a reduced ability to influence αsyn fibrillization compared to untreated counterparts. This study reports the first comprehensive examination of αsyn:EV interactions and demonstrates that sEVs are powerful modulators of αsyn fibrillization, which is mediated by the sEV membrane. In doing so, this work provides strong evidence for a role of sEVs in contributing directly to αsyn misfolding in the synucleinopathy disorders.


Assuntos
Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Dobramento de Proteína , Multimerização Proteica , alfa-Sinucleína/metabolismo , Membrana Celular/química , Vesículas Extracelulares/química , Humanos , Conformação Proteica , alfa-Sinucleína/química
4.
mBio ; 9(5)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279285

RESUMO

Invasion of host cells by apicomplexan parasites such as Toxoplasma gondii is critical for their infectivity and pathogenesis. In Toxoplasma, secretion of essential egress, motility, and invasion-related proteins from microneme organelles is regulated by oscillations of intracellular Ca2+ Later stages of invasion are considered Ca2+ independent, including the secretion of proteins required for host cell entry and remodeling from the parasite's rhoptries. We identified a family of three Toxoplasma proteins with homology to the ferlin family of double C2 domain-containing Ca2+ sensors. In humans and model organisms, such Ca2+ sensors orchestrate Ca2+-dependent exocytic membrane fusion with the plasma membrane. Here we focus on one ferlin that is conserved across the Apicomplexa, T. gondii FER2 (TgFER2). Unexpectedly, conditionally TgFER2-depleted parasites secreted their micronemes normally and were completely motile. However, these parasites were unable to invade host cells and were therefore not viable. Knockdown of TgFER2 prevented rhoptry secretion, and these parasites failed to form the moving junction at the parasite-host interface necessary for host cell invasion. Collectively, these data demonstrate the requirement of TgFER2 for rhoptry secretion in Toxoplasma tachyzoites and suggest a possible Ca2+ dependence of rhoptry secretion. These findings provide the first mechanistic insights into this critical yet poorly understood aspect of apicomplexan host cell invasion.IMPORTANCE Apicomplexan protozoan parasites, such as those causing malaria and toxoplasmosis, must invade the cells of their hosts in order to establish a pathogenic infection. Timely release of proteins from a series of apical organelles is required for invasion. Neither the vesicular fusion events that underlie secretion nor the observed reliance of the various processes on changes in intracellular calcium concentrations is completely understood. We identified a group of three proteins with strong homology to the calcium-sensing ferlin family, which are known to be involved in protein secretion in other organisms. Surprisingly, decreasing the amounts of one of these proteins (TgFER2) did not have any effect on the typically calcium-dependent steps in invasion. Instead, TgFER2 was essential for the release of proteins from organelles called rhoptries. These data provide a tantalizing first look at the mechanisms controlling the very poorly understood process of rhoptry secretion, which is essential for the parasite's infection cycle.


Assuntos
Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Linhagem Celular , Técnicas de Silenciamento de Genes , Genoma de Protozoário , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/genética , Toxoplasma/genética
5.
Acta Neuropathol Commun ; 6(1): 57, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976255

RESUMO

Parkinson's disease is diagnosed upon the presentation of motor symptoms, resulting from substantial degeneration of dopaminergic neurons in the midbrain. Prior to diagnosis, there is a lengthy prodromal stage in which non-motor symptoms, including olfactory deficits (hyposmia), develop. There is limited information about non-motor impairments and there is a need for directed research into these early pathogenic cellular pathways that precede extensive dopaminergic death in the midbrain. The protein tau has been identified as a genetic risk factor in the development of sporadic PD. Tau knockout mice have been reported as an age-dependent model of PD, and this study has demonstrated that they develop motor deficits at 15-months-old. We have shown that at 7-month-old tau knockout mice present with an overt hyposmic phenotype. This olfactory deficit correlates with an accumulation of α-synuclein, as well as autophagic impairment, in the olfactory bulb. This pathological feature becomes apparent in the striatum and substantia nigra of 15-month-old tau knockout mice, suggesting the potential for a spread of disease. Initial primary cell culture experiments have demonstrated that ablation of tau results in the release of α-synuclein enriched exosomes, providing a potential mechanism for disease spread. These alterations in α-synuclein level as well as a marked autophagy impairment in the tau knockout primary cells recapitulate results seen in the animal model. These data implicate a pathological role for tau in early Parkinson's disease.


Assuntos
Transtornos do Olfato/etiologia , Transtornos do Olfato/genética , Doença de Parkinson/complicações , Proteínas tau/deficiência , Fatores Etários , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/patologia , Exossomos/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Odorantes , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Doença de Parkinson/patologia , Desempenho Psicomotor/fisiologia , Proteína Sequestossoma-1/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/genética
6.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29202046

RESUMO

Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be dispensable for completion of the lytic cycle, including host cell invasion and egress by the parasite. However, the absence of the gene affected increased microneme release triggered by A23187, a Ca2+ ionophore used to raise the cytoplasmic Ca2+ concentration mimicking the physiological role of Ca2+ during invasion and egress. The basal levels of constitutive microneme release in extracellular parasites and phosphatidic acid-triggered microneme secretion were unaffected in the mutant. The phenotype of the deletion mutant of the second PGM-encoding gene in Toxoplasma, PGM2, was similar to the phenotype of the PRP1 deletion mutant. Furthermore, the ability of the tachyzoites to induce acute infection in the mice remained normal in the absence of both PGM paralogs. Our data thus reveal that the microneme secretion upon high Ca2+ flux is facilitated by the Toxoplasma PGM paralogs, PRP1 and PGM2. However, this protein-mediated release is neither essential for lytic cycle completion nor for acute virulence of the parasite. IMPORTANCE Ca2+-dependent exocytosis is essential for the life cycle of apicomplexan parasites. Toxoplasma gondii harbors a phosphoglucomutase (PGM) ortholog, PRP1, previously associated with Ca2+-dependent microneme secretion. Here it is shown that genetic deletion of either PRP1, its PGM2 ortholog, or both genes is dispensable for the parasite's lytic cycle, including host cell egress and invasion. Depletion of the proteins abrogated high Ca2+-mediated microneme secretion induced by the ionophore A23187; however, the constitutive and phosphatidic acid-mediated release remained unaffected. Secretion mediated by the former pathway is not essential for tachyzoite survival or acute in vivo infection in the mice.

7.
Neoplasia ; 19(11): 932-940, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28963969

RESUMO

Treatment of BRAF mutant melanoma with kinase inhibitors has been associated with rapid tumor regression; however, this clinical benefit is short-lived, and most patients relapse. A number of studies suggest that the extracellular environment promotes BRAF inhibitor resistance and tumor progression. Extracellular vesicles, such as exosomes, are functional mediators in the extracellular environment. They are small vesicles known to carry a concentrated group of functional cargo and serve as intercellular communicators not only locally but also systemically. Increasingly, it is reported that extracellular vesicles facilitate the development of drug resistance in cancer; however, their role in BRAF inhibitor resistance in melanoma is unclear. Here we investigated if extracellular vesicles from BRAF inhibitor-resistant melanoma could influence drug sensitivity in recipient melanoma cells. We demonstrate that the resistance driver, PDGFRß, can be transferred to recipient melanoma cells via extracellular vesicles, resulting in a dose-dependent activation of PI3K/AKT signaling and escape from MAPK pathway BRAF inhibition. These data suggest that the BRAF inhibitor-sensitive phenotype of metastatic melanoma can be altered by delivery of PDGFRß by extracellular vesicles derived from neighboring drug-resistant melanoma cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Líquido Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/administração & dosagem , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exossomos/metabolismo , Líquido Extracelular/efeitos dos fármacos , Humanos , Indóis/farmacologia , Melanoma/patologia , Sulfonamidas/farmacologia , Células Tumorais Cultivadas
8.
Methods Mol Biol ; 1658: 105-118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861786

RESUMO

Cell lines propagating prions are an efficient and useful means for studying the cellular and molecular mechanisms implicated in prion disease. Utilization of cell-based models has led to the finding that PrPC and PrPSc are released from cells in association with extracellular vesicles known as exosomes. Exosomes have been shown to act as vehicles for infectivity, transferring infectivity between cell lines and providing a mechanism for prion spread between tissues. Here, we describe the methods for generating a prion-propagating cell line with prion-infected brain homogenate, cell lysate, conditioned media, and exosomes and also detection of protease-resistant PrP with the prion-infected cell assay.


Assuntos
Exossomos/química , Ensaios de Triagem em Larga Escala , Immunoblotting/métodos , Neurônios/metabolismo , Proteínas PrPC/genética , Proteínas PrPSc/genética , Animais , Linhagem Celular , Clonagem Molecular , Meios de Cultivo Condicionados/química , Endopeptidase K/química , Exossomos/patologia , Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Neurônios/patologia , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Dobramento de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Annu Rev Microbiol ; 69: 463-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332089

RESUMO

Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.


Assuntos
Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/parasitologia , Animais , Interações Hospedeiro-Parasita , Humanos , Proteínas de Protozoários/metabolismo , Toxoplasma/citologia , Toxoplasmose/imunologia , Toxoplasmose/patologia , Vacúolos/parasitologia
10.
Cell Host Microbe ; 18(1): 49-60, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26118996

RESUMO

Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans.


Assuntos
Calcineurina/metabolismo , Adesão Celular , Plasmodium falciparum/enzimologia , Plasmodium falciparum/fisiologia , Toxoplasma/enzimologia , Toxoplasma/fisiologia , Eritrócitos/parasitologia , Fibroblastos/parasitologia , Humanos
11.
Semin Cell Dev Biol ; 40: 89-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704308

RESUMO

Many cell types, including neurons, are known to release small membranous vesicles known as exosomes. In addition to their protein content these vesicles have recently been shown to contain messenger RNA (mRNA) and micro RNA (miRNA) species. Roles for these vesicles include cell-cell signalling, removal of unwanted proteins, and transfer of pathogens (including prion-like misfolded proteins) between cells, such as infectious prions. Prions are the infectious particles that are responsible for transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Exosomes are also involved in processing the amyloid precursor protein (APP), which is associated with Alzheimer's disease (AD). As exosomes can be isolated from circulating fluids such as serum, urine, and cerebrospinal fluid (CSF), they provide a potential source of biomarkers for neurological conditions. Here, we review the roles these vesicles play in neurodegenerative disease and highlight their potential in diagnosing these disorders through analysis of their RNA content.


Assuntos
Vesículas Extracelulares/metabolismo , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Animais , Vesículas Extracelulares/química , Humanos , MicroRNAs/análise , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Príons/metabolismo
12.
Glycobiology ; 25(7): 745-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25701659

RESUMO

Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a ß-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.


Assuntos
Glicosaminoglicanos/metabolismo , Príons/metabolismo , Sulfatos/metabolismo , Microscopia Eletrônica de Transmissão , Estrutura Secundária de Proteína
13.
Cell Host Microbe ; 16(2): 177-186, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25121747

RESUMO

The asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P. falciparum histone deacetylase 2 (PfHda2), is a global silencer of virulence gene expression and controls the frequency of switching from the asexual cycle to sexual development. PfHda2 depletion leads to dysregulated expression of both virulence-associated var genes and PfAP2-g, a transcription factor controlling sexual conversion, and is accompanied by increases in gametocytogenesis. Mathematical modeling further indicates that PfHda2 has likely evolved to optimize the parasite's infectious period by achieving low frequencies of virulence gene expression switching and sexual conversion. This common regulation of cellular transcriptional programs mechanistically links parasite transmissibility and virulence.


Assuntos
Antígenos de Protozoários/imunologia , Histona Desacetilases/fisiologia , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/fisiologia , Sequência de Aminoácidos , Células Cultivadas , Epigênese Genética , Genes de Protozoários , Heterocromatina/genética , Heterocromatina/metabolismo , Interações Hospedeiro-Parasita , Humanos , Dados de Sequência Molecular , Plasmodium falciparum/citologia , Virulência/genética
14.
BMC Genomics ; 15: 354, 2014 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24885922

RESUMO

BACKGROUND: Next generation sequencing is helping to overcome limitations in organisms less accessible to classical or reverse genetic methods by facilitating whole genome mutational analysis studies. One traditionally intractable group, the Apicomplexa, contains several important pathogenic protozoan parasites, including the Plasmodium species that cause malaria.Here we apply whole genome analysis methods to the relatively accessible model apicomplexan, Toxoplasma gondii, to optimize forward genetic methods for chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) and ethylmethane sulfonate (EMS) at varying dosages. RESULTS: By comparing three different lab-strains we show that spontaneously generated mutations reflect genome composition, without nucleotide bias. However, the single nucleotide variations (SNVs) are not distributed randomly over the genome; most of these mutations reside either in non-coding sequence or are silent with respect to protein coding. This is in contrast to the random genomic distribution of mutations induced by chemical mutagenesis. Additionally, we report a genome wide transition vs transversion ratio (ti/tv) of 0.91 for spontaneous mutations in Toxoplasma, with a slightly higher rate of 1.20 and 1.06 for variants induced by ENU and EMS respectively. We also show that in the Toxoplasma system, surprisingly, both ENU and EMS have a proclivity for inducing mutations at A/T base pairs (78.6% and 69.6%, respectively). CONCLUSIONS: The number of SNVs between related laboratory strains is relatively low and managed by purifying selection away from changes to amino acid sequence. From an experimental mutagenesis point of view, both ENU (24.7%) and EMS (29.1%) are more likely to generate variation within exons than would naturally accumulate over time in culture (19.1%), demonstrating the utility of these approaches for yielding proportionally greater changes to the amino acid sequence. These results will not only direct the methods of future chemical mutagenesis in Toxoplasma, but also aid in designing forward genetic approaches in less accessible pathogenic protozoa as well.


Assuntos
Genoma , Toxoplasma/genética , Adenosina/genética , Adenosina/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Linhagem Celular , Metanossulfonato de Etila/toxicidade , Etilnitrosoureia/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Fenótipo , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Timidina/genética , Timidina/metabolismo , Toxoplasma/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 111(9): 3620-5, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550511

RESUMO

Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5-10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Exossomos/metabolismo , Dobramento de Proteína , Superóxido Dismutase/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Microscopia Eletrônica , Pinocitose/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Superóxido Dismutase/metabolismo
16.
J Biol Chem ; 289(2): 789-802, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24280226

RESUMO

Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.


Assuntos
Colesterol/metabolismo , Neurônios/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Células 3T3 , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/metabolismo , Expressão Gênica/genética , Humanos , Hidrocarbonetos Fluorados/farmacologia , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Neurônios/patologia , Doenças Priônicas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia
17.
Kidney Int ; 86(2): 433-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24352158

RESUMO

Micro RNAs (miRNAs) have been shown to circulate in biological fluids and are enclosed in vesicles such as exosomes; they are present in urine and represent a noninvasive methodology to detect biomarkers for diagnostic testing. The low abundance of RNA in urine creates difficulties in its isolation, of which exosomal miRNA is a small fraction, making downstream RNA assays challenging. Here, we investigate methods to maximize exosomal isolation and RNA yield for next-generation deep sequencing. Upon characterizing exosomal proteins and total RNA content in urine, several commercially available kits were tested for their RNA extraction efficiency. We subsequently used the methods with the highest miRNA content to profile baseline miRNA expression using next-generation deep sequencing. Comparisons of miRNA profiles were also made with exosomes isolated by differential ultracentrifugation methodology and a commercially available column-based protocol. Overall, miRNAs were found to be significantly enriched and intact in urine-derived exosomes compared with cell-free urine. The presence of other noncoding RNAs such as small nuclear and small nucleolar RNA in the exosomes, in addition to coding sequences related to kidney and bladder conditions, was also detected. Our study extensively characterizes the RNA content of exosomes isolated from urine, providing the potential to identify miRNA biomarkers in human urine.


Assuntos
Exossomos/química , Exossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , MicroRNAs/urina , Adulto , Biomarcadores/urina , Western Blotting , Exossomos/ultraestrutura , Feminino , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Ultracentrifugação , Urinálise/métodos , Adulto Jovem
18.
J Virol ; 88(5): 2690-703, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352465

RESUMO

UNLABELLED: Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrP(C) share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrP(Sc) are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrP(Sc), giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE: Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that the mutants make highly infectious prions that are more sensitive to protease treatment. This study highlights a certain region of the prion protein as being involved in this effect and demonstrates that prions are not always resistant to protease treatment.


Assuntos
Mutação , Príons/genética , Príons/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Códon , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/química , Proteólise , Alinhamento de Sequência
19.
Mol Cell Proteomics ; 12(8): 2148-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23645497

RESUMO

Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.


Assuntos
Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Proteínas ras/metabolismo , Animais , Anexinas/metabolismo , Transformação Celular Neoplásica/metabolismo , Cães , Genes ras , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Peptídeo Hidrolases/metabolismo , Proteoma , Tetraspaninas/metabolismo
20.
Cell ; 153(5): 1120-33, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23683579

RESUMO

Cell-cell communication is an important mechanism for information exchange promoting cell survival for the control of features such as population density and differentiation. We determined that Plasmodium falciparum-infected red blood cells directly communicate between parasites within a population using exosome-like vesicles that are capable of delivering genes. Importantly, communication via exosome-like vesicles promotes differentiation to sexual forms at a rate that suggests that signaling is involved. Furthermore, we have identified a P. falciparum protein, PfPTP2, that plays a key role in efficient communication. This study reveals a previously unidentified pathway of P. falciparum biology critical for survival in the host and transmission to mosquitoes. This identifies a pathway for the development of agents to block parasite transmission from the human host to the mosquito.


Assuntos
Comunicação Celular , Eritrócitos/patologia , Eritrócitos/parasitologia , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Actinas/antagonistas & inibidores , Animais , Culicidae/parasitologia , Resistência a Medicamentos , Exossomos/parasitologia , Humanos , Microtúbulos/efeitos dos fármacos , Plasmídeos/genética , Plasmodium falciparum/crescimento & desenvolvimento , Transdução de Sinais , Trofozoítos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...