Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
mSystems ; 6(4): e0081621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34402639

RESUMO

A central paradigm in microbiome data analysis, which we term the genome-centric paradigm, is that a linear (non-branching) DNA sequence is the ideal representation of a microbial genome. This representation is natural, as microbes indeed have non-branching genomes. Tremendous discoveries in microbiology were made under this paradigm, but is it always optimal for microbiome research? In this Commentary, we claim that the realization of this paradigm in metagenomic assembly, a fundamental step in the "metagenomics analysis pipeline," suboptimally models the extensive genomic variability present in the microbiome. We outline our efforts to address these issues with a "genome-free" approach that eschews linear genomic representations in favor of a pan-metagenomic graph.

3.
Front Microbiol ; 12: 643180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859630

RESUMO

The γ-proteobacteria are a group of diverse bacteria including pathogenic Escherichia, Salmonella, Vibrio, and Pseudomonas species. The majority swim in liquids with polar, sodium-driven flagella and swarm on surfaces with lateral, non-chemotactic flagella. Notable exceptions are the enteric Enterobacteriaceae such as Salmonella and E. coli. Many of the well-studied Enterobacteriaceae are gut bacteria that both swim and swarm with the same proton-driven peritrichous flagella. How different flagella evolved in closely related lineages, however, has remained unclear. Here, we describe our phylogenetic finding that Enterobacteriaceae flagella are not native polar or lateral γ-proteobacterial flagella but were horizontally acquired from an ancestral ß-proteobacterium. Using electron cryo-tomography and subtomogram averaging, we confirmed that Enterobacteriaceae flagellar motors resemble contemporary ß-proteobacterial motors and are distinct to the polar and lateral motors of other γ-proteobacteria. Structural comparisons support a model in which γ-proteobacterial motors have specialized, suggesting that acquisition of a ß-proteobacterial flagellum may have been beneficial as a general-purpose motor suitable for adjusting to diverse conditions. This acquisition may have played a role in the development of the enteric lifestyle.

4.
BMC Bioinformatics ; 21(1): 45, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024475

RESUMO

BACKGROUND: Current popular variant calling pipelines rely on the mapping coordinates of each input read to a reference genome in order to detect variants. Since reads deriving from variant loci that diverge in sequence substantially from the reference are often assigned incorrect mapping coordinates, variant calling pipelines that rely on mapping coordinates can exhibit reduced sensitivity. RESULTS: In this work we present GeDi, a suffix array-based somatic single nucleotide variant (SNV) calling algorithm that does not rely on read mapping coordinates to detect SNVs and is therefore capable of reference-free and mapping-free SNV detection. GeDi executes with practical runtime and memory resource requirements, is capable of SNV detection at very low allele frequency (<1%), and detects SNVs with high sensitivity at complex variant loci, dramatically outperforming MuTect, a well-established pipeline. CONCLUSION: By designing novel suffix-array based SNV calling methods, we have developed a practical SNV calling software, GeDi, that can characterise SNVs at complex variant loci and at low allele frequency thus increasing the repertoire of detectable SNVs in tumour genomes. We expect GeDi to find use cases in targeted-deep sequencing analysis, and to serve as a replacement and improvement over previous suffix-array based SNV calling methods.


Assuntos
Variação Genética , Genoma , Neoplasias/genética , Software , Algoritmos , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento Completo do Genoma
5.
Sci Rep ; 8(1): 97, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29311627

RESUMO

Understanding the evolution of molecular machines underpins our understanding of the development of life on earth. A well-studied case are bacterial flagellar motors that spin helical propellers for bacterial motility. Diverse motors produce different torques, but how this diversity evolved remains unknown. To gain insights into evolution of the high-torque ε-proteobacterial motor exemplified by the Campylobacter jejuni motor, we inferred ancestral states by combining phylogenetics, electron cryotomography, and motility assays to characterize motors from Wolinella succinogenes, Arcobacter butzleri and Bdellovibrio bacteriovorus. Observation of ~12 stator complexes in many proteobacteria, yet ~17 in ε-proteobacteria suggest a "quantum leap" evolutionary event. Campylobacter-type motors have high stator occupancy in wider rings of additional stator complexes that are scaffolded by large proteinaceous periplasmic rings. We propose a model for motor evolution wherein independent inner- and outer-membrane structures fused to form a scaffold for additional stator complexes. Significantly, inner- and outer-membrane associated structures have evolved independently multiple times, suggesting that evolution of such structures is facile and poised the ε-proteobacteria to fuse them to form the high-torque Campylobacter-type motor.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter/fisiologia , Flagelos/fisiologia , Fenômenos Mecânicos , Proteínas Motores Moleculares/metabolismo , Proteínas de Bactérias/genética , Campylobacter/classificação , Campylobacter/ultraestrutura , Campylobacter jejuni/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Flagelos/ultraestrutura , Proteínas Motores Moleculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...