Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 217: 121008, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498881

RESUMO

Currently, no standard method exists for analyzing insensitive munition (IM) compounds in environmental matrices, with or without concurrent legacy munition compounds, resulting in potentially inaccurate determinations. The primary objective of this work was to develop new methods of extraction, pre-concentration, and analytical separation/quantitation of 17 legacy munition compounds along with several additional IM compounds, IM breakdown products, and other munition compounds that are not currently included in U. S. Environmental Protection Agency (EPA) Method 8330B. The eight additional compounds included were nitroguanidine, 3-nitro-1,2,4-triazol-5-one, picric acid, 2,4-dinitroanisole, 2,4-dinitrophenol, 2-nitrophenol, 4-nitrophenol, and new surrogate ortho-nitrobenzoic acid (o-NBA). Analytical methods were developed to enable sensitive, simultaneous detection and quantitation of the 24 IM and legacy compounds, including two orthogonal high-performance liquid chromatography (HPLC) column separations with either ultraviolet (UV) or mass spectrometric (MS) detection. Procedures were developed for simultaneous extraction of all 24 analytes and two surrogates (1,2-dinitrobenzene, 1,2-DNB; o-NBA) from high- and low-level aqueous matrices and solid matrices, using acidification, solid phase extraction (SPE), or solvent extraction (SE), respectively. For low-level aqueous samples extracted by SPE, all compounds were recovered within current Department of Defense Quality Systems Manual (DoD QSM) Ver5.3 accepted limits for aqueous samples analyzed by EPA Method 8330B (57-135%), except NQ, which was consistently recovered at approximately 50%. Likewise, all compounds were recovered from six geographically/geochemically unique soil types within current QSM accepted limits for solid samples analyzed by EPA Method 8330B (64-135%). Further, the majority of compounds were recovered from four tissue types within current limits for solids, with generally low recovery only for Tetryl (from 4 to 62%). A preparatory chromatographic interference removal procedure was adapted for tissue extracts, as various analytical interferences were observed for all studied tissue types.

2.
Environ Toxicol Chem ; 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473669

RESUMO

The synthesis of carbon-based nanomaterials is often inefficient, generating large amounts of soot with metals as waste by-product. Currently, there are no specific regulations for disposal of engineered nanomaterials or the waste by-products resulting from their synthesis, so it is presumed that by-products are disposed of in the same way as the parent (bulk) materials. We studied the terrestrial toxicity of soot from gadolinium metallofullerene nanomanufacturing on earthworms (Eisenia fetida) and isopods (Porcellio scaber). The metallofullerene soot consisted of carbon particle agglomerates in the nanometer and submicrometer ranges (1-100 and 101-999 nm, respectively), with metals used during nanomanufacturing detectable on the particles. Despite high metal concentrations (>100 000 mg/kg) in the soot, only a relatively small amount of metals leached out of a spiked field soil, suggesting only moderate mobility. Seven- and 14-d exposures in field soil demonstrated that the soot was only toxic to earthworms at high concentrations (>10 000 mg/kg); however, earthworms avoided spiked soils at lower concentrations (as low as 500 mg/kg) and at lower soil pH. The presence of soot in food and soil did not cause isopod avoidance. These data demonstrate that metallofullerene soot from nanomanufacturing may only be toxic to earthworms at high concentrations representative of improper disposal or accidental spills. However, our results indicate that terrestrial invertebrates may avoid soils contaminated with soot at sublethal concentrations. Environ Toxicol Chem 2018;9999:1-12. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.

3.
Nanotoxicology ; 11(4): 546-557, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28463032

RESUMO

The unique behavior of engineered nanomaterials (ENM) in aqueous media and dynamic changes in particle settling, agglomeration and dissolution rates is a challenge to the consistency, reliability and interpretation of standard aquatic hazard bioassay results. While the toxicological endpoints (e.g., survival, growth, reproduction, etc.) in ecotoxicity bioassays are largely applicable to ENMs, the standard methods as written for dissolved substances are confounded by the dynamic settling, agglomeration and dissolution of particulate ENMs during the bioassay. A testing framework was designed to serve as a starting point to identify approaches for the consistent conduct of aquatic hazard tests that account for the behavior of ENMs in test media and suitable data collection to support representative exposure metrology. The framework was demonstrated by conducting three case studies testing ENMs with functionally distinct characteristics and behaviors. Pretests with a temporal sampling of particle concentration, agglomeration and dissolution were conducted on each ENM in test media. Results indicated that a silver nanoparticle (AgNP) powder was not dispersible, a nano-TiO2 powder was dispersible but unstable, and a polyvinylpyrrolidinone-coated AgNP was relatively stable in test media. Based on these functional results, Ceriodaphnia dubia bioassays were conducted to compare different exposure summary methods (nominal, arithmetic average, geometric average, time-weighted average) for calculating and expressing toxicity endpoints. Results indicated that while arithmetic means were effective for expressing the toxicity of more stable materials, time-weighted averaged concentrations were appropriate for the unstable nano-TiO2.


Assuntos
Daphnia/efeitos dos fármacos , Ecotoxicologia/métodos , Nanopartículas/toxicidade , Prata/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Reprodutibilidade dos Testes , Solubilidade , Testes de Toxicidade/métodos
4.
Environ Toxicol Chem ; 35(7): 1835-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26666709

RESUMO

An initiative within the US military is targeting the replacement of traditional munitions constituents with insensitive munitions to reduce the risk of accidental detonation. The bioavailability and bioaccumulative potential of the insensitive munitions compound 2,4-dinitroanisole (DNAN) to Eisenia fetida was assessed in soils with different geochemical characteristics. Prior to exposure, soils were chemically spiked with DNAN and aged for 1 wk or 29 wk. Transformation products 2- and 4-amino-nitroanisole (2A-4NAN and 4A-2NAN) occurred in aged soils and their porewater but never at concentrations higher than the residual DNAN. The sum of DNAN, 2A-4NAN, and 4A-2NAN (sumDNAN) in soil decreased with aging, likely by irreversible binding. Both clay and organic matter contents of the soil appeared to affect the bioavailability of DNAN. The sumDNAN body residues of earthworms approached apparent steady state after 1 d and remained relatively constant through to day 7. Higher concentrations of 2A-4NAN and 4A-2NAN measured in worm tissues relative to those in soil suggest reductive transformation of DNAN in the tissues. Mean bioaccumulation factors (ratio of tissue to soil concentrations) varied from 1.2 to 4.3, whereas mean bioconcentration factors (ratio of tissue to porewater concentrations) ranged from 1.4 to 3.2. Porewater seems to play a significant role in the accumulation of DNAN in earthworms, consistent with equilibrium partitioning theory. The concentration of DNAN in soil porewater could serve as an indicator of bioavailability as well as a predictor of the concentration of that compound in earthworms. Environ Toxicol Chem 2016;35:1835-1842. Publlished 2015 SETAC. This article is a US Government work, and as such, is in the public domain in the United States of America.


Assuntos
Anisóis/metabolismo , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Animais , Anisóis/análise , Anisóis/toxicidade , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Trato Gastrointestinal/química , Trato Gastrointestinal/metabolismo , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Chemosphere ; 106: 65-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24582361

RESUMO

In benthic sediment bioassays, determining the relative contribution to exposure by contaminants in overlying water, porewater, and sediment particles is technically challenging. The purpose of the present study was to assess the potential for membranes to be utilized as a mechanism to allow freely dissolved hydrophobic organic contaminants into a pathway isolation exposure chamber (PIC) while excluding all sediment particles and dissolved organic carbon (DOC). This investigation was conducted in support of a larger effort to assess contaminant exposure pathways to benthos. While multiple passive samplers exist for estimating concentrations of contaminants in porewater such as those using solid-phase micro extraction (SPME) and polyoxymethylene (POM), techniques to effectively isolate whole organism exposure to porewater within a sediment system are not available. We tested the use of four membranes of different pore sizes (0.1-1.2µm) including nylon, polycarbonate, polyethylsulfone, and polytetrafluoroethylene with a hydrophilic coating. Exposures included both diffusion of radiolabeled and non-labeled contaminants across membranes from aqueous, sediment slurry, and whole sediment sources to assess and evaluate the best candidate membrane. Data generated from the present study was utilized to select the most suitable membrane for use in the larger bioavailability project which sought to assess the relevance of functional ecology in bioavailability of contaminated sediments at remediation sites. The polytetrafluoroethylene membrane was selected for use in the PIC, although exclusion of dissolved organic carbon was not achieved.


Assuntos
Membranas Artificiais , Bifenilos Policlorados/química , Testes de Toxicidade/instrumentação , Poluentes Químicos da Água/química , Animais , Difusão , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Sedimentos Geológicos/química , Interações Hidrofóbicas e Hidrofílicas , Invertebrados , Plâncton , Bifenilos Policlorados/análise , Bifenilos Policlorados/isolamento & purificação , Testes de Toxicidade/métodos , Água/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
6.
Environ Toxicol Chem ; 33(6): 1308-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24549573

RESUMO

Depleted uranium (DU) from the military testing and use of armor-piercing kinetic energy penetrators has been shown to accumulate in soils; however, little is known about the toxicity of DU geochemical species created through corrosion or weathering. The purpose of the present study was to assess the toxic effects and bioaccumulation potential of field-collected DU oxides to the model terrestrial invertebrates Eisenia fetida (earthworm) and Porcellio scaber (isopod). Earthworm studies were acute (72 h) dermal exposures or 28-d spiked soil exposures that used noncontaminated field-collected soils from the US Army's Yuma and Aberdeen Proving Grounds. Endpoints assessed in earthworm testing included bioaccumulation, growth, reproduction, behavior (soil avoidance), and cellular stress (neutral red uptake in coelomocytes). Isopod testing used spiked food, and endpoints assessed included bioaccumulation, survival, and feeding behavior. Concentration-dependent bioaccumulation of DU in earthworms was observed with a maximum bioaccumulation factor of 0.35; however, no significant reductions in survival or impacts to cellular stress were observed. Reproduction lowest-observed-effect concentrations (LOEC) of 158 mg/kg and 96 mg/kg were observed in Yuma Proving Ground and a Mississippi reference soil (Karnac Ferry), respectively. Earthworm avoidance of contaminated soils was not observed in 48-h soil avoidance studies; however, isopods were shown to avoid food spiked with 12.7% by weight DU oxides through digital tracking studies.


Assuntos
Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Militares , Solo/química , Urânio/análise , Urânio/toxicidade , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bioensaio , Isópodes/efeitos dos fármacos , Isópodes/fisiologia , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Reprodução/efeitos dos fármacos , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Estados Unidos , Urânio/metabolismo
7.
Environ Sci Technol ; 47(24): 14315-23, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24218983

RESUMO

Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 µg/L 100 nm Au and 4.8 µg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 µg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 µg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media.


Assuntos
Daphnia/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Oligoquetos/metabolismo , Prata/química , Espectrofotometria Atômica/métodos , Animais , Bovinos , Carne , Tamanho da Partícula , Compostos de Amônio Quaternário/química , Reprodutibilidade dos Testes
8.
Environ Toxicol Chem ; 32(9): 2069-77, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23686570

RESUMO

As the production and applications of silver nanoparticles (AgNPs) increase, it is essential to characterize fate and effects in environmental systems. Nanosilver materials may settle from suspension; therefore, the authors' objective was to utilize environmentally relevant bioassays and study the impact, bioaccumulation, tissue distribution, uptake, and depuration of AgNPs on a sediment-dwelling invertebrate, Lumbriculus variegatus. Hydrodynamic diameters of uncoated 30-nm, 80-nm, and 1500-nm AgNP powders and a polyvinyl pyrrolidone (PVP) AgNP suspension were measured utilizing dynamic light scattering in freshwater media (0-280 µS/cm). Aggregation for 30 nm, 80 nm, and 1500 nm silver increased with conductivity but was minimal for PVP silver. Lumbriculus variegatus were exposed to AgNPs or silver nitrate (AgNO3 ) spiked into sediment (nominally 100 mg/kg) and water (PVP 30 nm and 70 nm Ag, nominally 5 mg/L). Uptake was assessed through inductively coupled plasma mass spectroscopy (ICP-MS) and hyperspectral imaging. Particle sizes were examined through field flow fractionation-ICP-MS (FFF-ICP-MS) and ICP-MS in single particle mode (SP-ICP-MS). Lumbriculus variegatus were also depurated for 6 h, 8 h, 24 h, and 48 h to determine gut clearance. Bioaccumulation factors of sediment-exposed L. variegatus were similar regardless of particle size or coatings. The FFF-ICP-MS and SP-ICP-MS detected AgNPs for up to 48 h post depuration. The present study provides information on bioaccumulation and interactions of AgNPs within biological systems.


Assuntos
Nanopartículas Metálicas , Oligoquetos/efeitos dos fármacos , Prata/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Disponibilidade Biológica , Água Doce , Sedimentos Geológicos/química , Oligoquetos/metabolismo , Tamanho da Partícula , Povidona/química , Prata/química , Nitrato de Prata/metabolismo , Distribuição Tecidual , Poluentes Químicos da Água/química
9.
Environ Toxicol Chem ; 29(2): 422-429, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20821462

RESUMO

Nano-aluminum oxide (Al(2)O(3)) is used commercially in coatings and abrasives. Nano-Al(2)O(3) can also be generated through the oxidation of nano-aluminum in military propellants and energetics. The purpose of the present study was to assess toxicity and bioaccumulation of nano-Al(2)O(3) to a variety of sediment organisms (Tubifex tubifex, Hyalella azteca, Lumbriculus variegatus, and Corbicula fluminea). The bioaccumulation and toxicity of nano-Al(2)O(3) was compared with that of micron-sized Al(2)O(3) to investigate potential size-related effects. Results of the present study show species-specific differences in relative bioaccumulation of nano and micron-sized Al(2)O(3). Significant toxic effects (survival and growth) were observed in H. azteca testing, but only at high concentrations unlikely to be found in the environment. Nano-Al(2)O(3) was found to be more toxic than micron-sized Al(2)O(3) to H. azteca survival in a 14-d study in which organisms were in direct contact with a thin layer of 625 or 2,500 mg of Al(2)O(3) dispersed on the surface of either sediment or sand. A significant growth effect was also observed for nano but not micron-sized Al(2)O(3) at the highest treatment level tested (100 g/kg Al(2)O(3)) in a 10-d H. azteca bioassay in which Al(2)O(3) was homogenized with sediment. However, differences in measured sediment Al concentrations (micron-sized = 55.1 [+/-0.6] g/kg Al; nano-sized = 66.2 [+/-0.6] g/kg Al) in the nano and micron-sized Al(2)O(3) preclude direct comparison of the toxicity of these two treatments based on particle size.


Assuntos
Óxido de Alumínio/toxicidade , Sedimentos Geológicos/análise , Poluentes Químicos da Água/toxicidade , Óxido de Alumínio/farmacocinética , Anfípodes/efeitos dos fármacos , Anfípodes/metabolismo , Animais , Corbicula/efeitos dos fármacos , Corbicula/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula
10.
Environ Toxicol Chem ; 29(7): 1575-80, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20821608

RESUMO

Nano-sized aluminum is currently being used by the military and commercial industries in many applications including coatings, thermites, and propellants. Due to the potential for wide dispersal in soil systems, we chose to investigate the fate and effects of nano-sized aluminum oxide (Al2O3), the oxidized form of nano aluminum, in a terrestrial organism. The toxicity and bioaccumulation potential of micron-sized (50-200 microm, nominal) and nano-sized (11 nm, nominal) Al2O3 was comparatively assessed through acute and subchronic bioassays using the terrestrial earthworm, Eisenia fetida. Subchronic (28-d) studies were performed exposing E. fetida to nano- and micron-sized Al2O3-spiked soils to assess the effects of long-term exposure. No mortality occurred in subchronic exposures, although reproduction decreased at >or=3,000 mg/kg nano-sized Al2O3 treatments, with higher aluminum body burdens observed at 100 and 300 mg/kg; no reproductive effects were observed in the micron-sized Al2O3 treatments. In addition to toxicity and bioaccumulation bioassays, an acute (48-h) behavioral bioassay was conducted utilizing a soil avoidance wheel in which E. fetida were given a choice of habitat between control, nano-, or micron-sized Al2O3 amended soils. In the soil avoidance bioassays, E. fetida exhibited avoidance behavior toward the highest concentrations of micron- and nano-sized Al2O3 (>5,000 mg/kg) relative to control soils. Results of the present study indicate that nano-sized Al2O3 may impact reproduction and behavior of E. fetida, although at high levels unlikely to be found in the environment.


Assuntos
Óxido de Alumínio/toxicidade , Nanopartículas , Oligoquetos/metabolismo , Óxido de Alumínio/farmacocinética , Animais , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...