Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 107: 104417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493879

RESUMO

The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1ß levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.


Assuntos
Arsênio , Cynara scolymus , Nanopartículas Metálicas , Extratos Vegetais , Camundongos , Animais , Arsênio/metabolismo , Ouro , Camundongos Endogâmicos BALB C , Nanopartículas Metálicas/toxicidade , Hipocampo/metabolismo
2.
BMC Oral Health ; 23(1): 544, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553617

RESUMO

OBJECTIVES: To assess if the results following intake of a diet using an Okinawan-based Nordic diet (OBND) over one month differs in endocrinological, periodontal clinical outcome, and serum cytokine levels compared to a standard hospital care diet in individuals with diabetes type 2 (T2D) (control group). BACKGROUND: Scientific evidence suggests that the use of diet for individuals with T2D may be beneficial. METHODS: Participating individuals with T2D were randomly assigned to a test (OBND) (n = 14), or control group (n = 16). Anthropometric data, blood glucose levels, HbA1c levels, lipids, serum inflammation markers (CRP, and a routine panel of 24 cytokines), blood pressure, gingival bleeding on probing (BOP), probing pocket depths (PPD), and clinical attachment levels (CAL) were studied. RESULTS: Statistical analyses of baseline study data failed to demonstrate study group differences. The mean weight reduction was greater in the OBND group (4.1 kg) versus the control group (1.3 kg) (p < 0.01). The reduction in BMI was 1.4 kg/m2 in OBND (p < 0.001) and 0.5 kg/m2 in the control group, respectively (p < 0.01). Diastolic and systolic blood pressure reductions were greater in the OBND group than in the control group (p < 0.01). Periodontal study parameters (BOP % scores) and (PPD values) decreased (p < 0.001) overall with no between group differences. The OBND resulted in reduction of serum levels of IFNγ, Eotaxin IL-9, IP10,IL17a, MCP-1,m and PDFBB compared to the control diet. CONCLUSIONS: A strict T2D- diet provides an association between reduction in serum HbA1c and BOP scores. Serum levels decreases in IFNγ, Eotaxin IL-9, IP-10, IL17a. MCP-1, and PDFBB were only found in the test group.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças da Gengiva , Doenças Periodontais , Humanos , Diabetes Mellitus Tipo 2/complicações , Hemoglobinas Glicadas , Estudos de Casos e Controles , Interleucina-9 , Citocinas , Dieta
3.
iScience ; 25(5): 104274, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35542045

RESUMO

Brain inflammation generally accelerates neurodegeneration. Alzheimer's disease (AD) triggers an innate immune response by activating a cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway. Our study investigated patients with leprosy and AD. They were treated with dapsone (4,4'-diaminodiphenyl sulfone, DDS) as a neuroinflammasome competitor and cGAS/STING pathway inhibitor. Four groups were defined: Treatment (T) 1: DDS prescribed AD diagnosed, T 2: DDS prescribed AD undiagnosed, T 3 DDS unprescribed AD diagnosed, and T 4: DDS unprescribed AD undiagnosed. Dapsone effects on AD can be clearly distinguished according to dapsone presence or absence. T1:T3 proved that the incidence of AD was significantly reduced by dapsone. T2:T3 proved that the prevalence of AD was significantly high without dapsone. T1:T4 proved that the prevalence decreased when taking dapsone. Our study demonstrates that dapsone can prevent AD exacerbation and may represent a preventive therapeutic option for exacerbated AD.

4.
Bioact Mater ; 9: 358-372, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820576

RESUMO

To reflect human development, it is critical to create a substrate that can support long-term cell survival, differentiation, and maturation. Hydrogels are promising materials for 3D cultures. However, a bulk structure consisting of dense polymer networks often leads to suboptimal microenvironments that impedes nutrient exchange and cell-to-cell interaction. Herein, granular hydrogel-based scaffolds were used to support 3D human induced pluripotent stem cell (hiPSC)-derived neural networks. A custom designed 3D printed toolset was developed to extrude hyaluronic acid hydrogel through a porous nylon fabric to generate hydrogel granules. Cells and hydrogel granules were combined using a weaker secondary gelation step, forming self-supporting cell laden scaffolds. At three and seven days, granular scaffolds supported higher cell viability compared to bulk hydrogels, whereas granular scaffolds supported more neurite bearing cells and longer neurite extensions (65.52 ± 11.59 µm) after seven days compared to bulk hydrogels (22.90 ± 4.70 µm). Long-term (three-month) cultures of clinically relevant hiPSC-derived neural cells in granular hydrogels supported well established neuronal and astrocytic colonies and a high level of neurite extension both inside and beyond the scaffold. This approach is significant as it provides a simple, rapid and efficient way to achieve a tissue-relevant granular structure within hydrogel cultures.

6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613503

RESUMO

Dapsone (DDS) therapy can frequently lead to hematological side effects, such as methemoglobinemia and DNA damage. In this study, we aim to evaluate the protective effect of racemic alpha lipoic acid (ALA) and its enantiomers on methemoglobin induction. The pre- and post-treatment of erythrocytes with ALA, ALA isomers, or MB (methylene blue), and treatment with DDS-NOH (apsone hydroxylamine) was performed to assess the protective and inhibiting effect on methemoglobin (MetHb) formation. Methemoglobin percentage and DNA damage caused by dapsone and its metabolites were also determined by the comet assay. We also evaluated oxidative parameters such as SOD, GSH, TEAC (Trolox equivalent antioxidant capacity) and MDA (malondialdehyde). In pretreatment, ALA showed the best protector effect in 2.5 µg/mL of DDS-NOH. ALA (1000 µM) was able to inhibit the induced MetHb formation even at the highest concentrations of DDS-NOH. All ALA tested concentrations (100 and 1000 µM) were able to inhibit ROS and CAT activity, and induced increases in GSH production. ALA also showed an effect on DNA damage induced by DDS-NOH (2.5 µg/mL). Both isomers were able to inhibit MetHb formation and the S-ALA was able to elevate GSH levels by stimulating the production of this antioxidant. In post-treatment with the R-ALA, this enantiomer inhibited MetHb formation and increased GSH levels. The pretreatment with R-ALA or S-ALA prevented the increase in SOD and decrease in TEAC, while R-ALA decreased the levels of MDA; and this pretreatment with R-ALA or S-ALA showed the effect of ALA enantiomers on DNA damage. These data show that ALA can be used in future therapies in patients who use dapsone chronically, including leprosy patients.


Assuntos
Metemoglobina , Ácido Tióctico , Metemoglobina/metabolismo , Antioxidantes/farmacologia , Ácido Tióctico/farmacologia , Dapsona/farmacologia , Superóxido Dismutase , Dano ao DNA
7.
Int J Mol Med ; 46(2): 489-508, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32626922

RESUMO

We are being confronted with the most consequential pandemic since the Spanish flu of 1918­1920 to the extent that never before have 4 billion people quarantined simultaneously; to address this global challenge we bring to the forefront the options for medical treatment and summarize SARS­CoV2 structure and functions, immune responses and known treatments. Based on literature and our own experience we propose new interventions, including the use of amiodarone, simvastatin, pioglitazone and curcumin. In mild infections (sore throat, cough) we advocate prompt local treatment for the naso­pharynx (inhalations; aerosols; nebulizers); for moderate to severe infections we propose a tried­and­true treatment: the combination of arginine and ascorbate, administered orally or intravenously. The material is organized in three sections: i) Clinical aspects of COVID­19; acute respiratory distress syndrome (ARDS); known treatments; ii) Structure and functions of SARS­CoV2 and proposed antiviral drugs; iii) The combination of arginine­ascorbate.


Assuntos
SARS-CoV-2/patogenicidade , Amiodarona/uso terapêutico , Animais , COVID-19/virologia , Curcumina/uso terapêutico , Humanos , Pioglitazona/uso terapêutico , Síndrome do Desconforto Respiratório/virologia , Sinvastatina/uso terapêutico
8.
Environ Toxicol Pharmacol ; 65: 9-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468972

RESUMO

The available information on the interplay between low-dose cadmium intake and copper, manganese, and iron homeostasis in invertebrates is limited. We have currently studied the accumulation of these trace metals in the hepatopancreas of adult snails, Cantareus aspersus, following 14 and 28 days of exposure to low doses of dietary cadmium, up to 1 mg/kg dw (dry weight). The cadmium dose, but not the duration of exposure, had a significant effect on hepatopancreas copper deposition, the values being significantly elevated compared to controls. A significant peak in manganese levels at 14 days was found in snails administered the lowest cadmium dose. These increases occurred even in the absence of cadmium increase in the hepatopancreas. Our data suggest that low dose cadmium feeding can produce a transient disturbance in hepatopancreas copper and manganese homeostasis. Such responses may serve as early biomarkers of physiological changes occurring during the initial stages of cadmium intoxication.


Assuntos
Metais Pesados/metabolismo , Metais Pesados/toxicidade , Caramujos/efeitos dos fármacos , Animais , Dieta , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Homeostase/efeitos dos fármacos , Caramujos/metabolismo
9.
Sci Rep ; 8(1): 15552, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341335

RESUMO

Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 µm to 5 µm). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges - such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Membranas , Neuritos/fisiologia , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Neuritos/ultraestrutura
10.
Front Neurosci ; 12: 590, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233290

RESUMO

The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the "core battery" of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.

11.
Environ Toxicol Pharmacol ; 62: 20-29, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29935434

RESUMO

The present study aimed to elucidate the photosynthetic performance, antioxidant enzyme activities, anthocyanin contents, anthocyanin biosynthetic gene expression, and vanadium uptake in mustard genotypes (purple and green) that differ in photosynthetic capacity under vanadium stress. The results indicated that vanadium significantly reduced photosynthetic activity in both genotypes. The activities of the antioxidant enzymes were increased significantly in response to vanadium in both genotypes, although the purple exhibited higher. The anthocyanin contents were also reduced under vanadium stress. The anthocyanin biosynthetic genes were highly expressed in the purple genotype, notably the genes TT8, F3H, and MYBL2 under vanadium stress. The results indicate that induction of TT8, F3H, and MYBL2 genes was associated with upregulation of the biosynthetic genes required for higher anthocyanin biosynthesis in purple compared with the green mustard. The roots accumulated higher vanadium than shoots in both mustard genotypes. The results indicate that the purple mustard had higher vanadium tolerance.


Assuntos
Antocianinas/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mostardeira/efeitos dos fármacos , Vanádio/toxicidade , Catalase/metabolismo , Genótipo , Mostardeira/fisiologia , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Superóxido Dismutase/metabolismo
12.
Mol Med Rep ; 17(6): 7757-7763, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29620235

RESUMO

Pyrrolizidine alkaloids (PAs) are a widespread class of hepatotoxic heterocyclic organic compounds found in approximately 3% of world flora. Some PAs have been shown to have genotoxic and carcinogenic effects. The present study focuses on the toxicity effects of four dry extracts obtained from medicinal plants (Senecio vernalis, Symphytum officinale, Petasites hybridus and Tussilago farfara), on two aquatic organisms, Artemia salina and Daphnia magna, and the correlation with their PAs content. A new GC­MS method, using a retention time (TR)­5MS type capillary column was developed. PAs Kovats retention indices, for this type of column were computed for the first time. The lethal dose 50% (LC50) values for the two invertebrate models were correlated (Pearson 's coefficient, >0.9) and the toxicity was PA concentration-dependent, for three of the four extracts. All tested extracts were found to be toxic in both aquatic organism models. The results can be used to develop a GC­MS validated method for the assay of PAs in medicinal plants with a further potential application in the risk assessment study of PAs toxicity in humans.


Assuntos
Invertebrados/efeitos dos fármacos , Extratos Vegetais/toxicidade , Alcaloides de Pirrolizidina/toxicidade , Animais , Cromatografia Gasosa-Espectrometria de Massas , Concentração Inibidora 50 , Plantas Medicinais/química , Testes de Toxicidade
13.
Food Chem Toxicol ; 107(Pt A): 108-121, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28645870

RESUMO

Modern agriculture provides the potential for sustainable feeding of the world's increasing population. Up to the present moment, genetically modified (GM) products have enabled increased yields and reduced pesticide usage. Nevertheless, GM products are controversial amongst policy makers, scientists and the consumers, regarding their possible environmental, ecological, and health risks. Scientific-and-political debates can even influence legislation and prospective risk assessment procedure. Currently, the scientifically-assessed direct hazardous impacts of GM food and feed on fauna and flora are conflicting; indeed, a review of literature available data provides some evidence of GM environmental and health risks. Although the consequences of gene flow and risks to biodiversity are debatable. Risks to the environment and ecosystems can exist, such as the evolution of weed herbicide resistance during GM cultivation. A matter of high importance is to provide precise knowledge and adequate current information to regulatory agencies, governments, policy makers, researchers, and commercial GMO-releasing companies to enable them to thoroughly investigate the possible risks.


Assuntos
Ração Animal/análise , Alimentos Geneticamente Modificados/normas , Plantas Geneticamente Modificadas/química , Animais , Qualidade de Produtos para o Consumidor/normas , Ecossistema , Meio Ambiente , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
15.
PLoS One ; 10(8): e0134768, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284371

RESUMO

Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDS-NHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10-1000 µM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET), but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT) activity and reactive oxygen species (ROS) generation, but did not alter superoxide dismutase (SOD) activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.


Assuntos
Antioxidantes/farmacologia , Dapsona/análogos & derivados , Substâncias Protetoras/farmacologia , Estilbenos/farmacologia , Adulto , Catalase/metabolismo , Células Cultivadas , Dapsona/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Feminino , Humanos , Masculino , Metemoglobina/metabolismo , Metemoglobinemia/tratamento farmacológico , Metemoglobinemia/metabolismo , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Superóxido Dismutase/metabolismo , Adulto Jovem
16.
J Cereb Blood Flow Metab ; 35(8): 1348-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25853906

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, affecting more than 35 million people worldwide. Brain hypometabolism is a major feature of AD, appearing decades before cognitive decline and pathologic lesions. To date, the majority of studies on hypometabolism in AD have used transgenic animal models or imaging studies of the human brain. As it is almost impossible to validate these findings using human tissue, alternative models are required. In this study, we show that human stem cell-derived neuron and astrocyte cultures treated with oligomers of amyloid beta 1-42 (Aß1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose, pyruvate, lactate, and glutamate. In addition, a significant increase in the glycogen content of cells was also observed. These changes were accompanied by changes in NAD(+)/NADH, ATP, and glutathione levels, suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aß-induced hypometabolism. Further research using this model may elucidate the mechanisms associated with Aß-induced hypometabolism.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Modelos Biológicos , Rede Nervosa/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Células-Tronco/metabolismo , Doença de Alzheimer/patologia , Astrócitos/patologia , Linhagem Celular Tumoral , Metabolismo Energético , Humanos , Rede Nervosa/patologia , Neurônios/patologia , Estresse Oxidativo , Células-Tronco/patologia
17.
PLoS One ; 10(3): e0118786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738989

RESUMO

The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Antagonistas Colinérgicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Amitriptilina/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Colinérgicos/farmacologia , Diciclomina/farmacologia , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Oxotremorina/farmacologia , Receptores Muscarínicos/metabolismo , Tubulina (Proteína)/metabolismo
18.
Environ Toxicol Pharmacol ; 38(3): 968-76, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25461557

RESUMO

Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48h of incubation with increasing concentrations of pesticides ranging from 1 to 1000µM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure.


Assuntos
Amidas/toxicidade , Fungicidas Industriais/toxicidade , Neuroglia/metabolismo , Neurônios/metabolismo , Nitrilas/toxicidade , Triazóis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Testes de Toxicidade
19.
PLoS One ; 9(1): e85712, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465659

RESUMO

This study aims to assess the oxidative stress in leprosy patients under multidrug therapy (MDT; dapsone, clofazimine and rifampicin), evaluating the nitric oxide (NO) concentration, catalase (CAT) and superoxide dismutase (SOD) activities, glutathione (GSH) levels, total antioxidant capacity, lipid peroxidation, and methemoglobin formation. For this, we analyzed 23 leprosy patients and 20 healthy individuals from the Amazon region, Brazil, aged between 20 and 45 years. Blood sampling enabled the evaluation of leprosy patients prior to starting multidrug therapy (called MDT 0) and until the third month of multidrug therapy (MDT 3). With regard to dapsone (DDS) plasma levels, we showed that there was no statistical difference in drug plasma levels between multibacillary (0.518±0.029 µg/mL) and paucibacillary (0.662±0.123 µg/mL) patients. The methemoglobin levels and numbers of Heinz bodies were significantly enhanced after the third MDT-supervised dose, but this treatment did not significantly change the lipid peroxidation and NO levels in these leprosy patients. In addition, CAT activity was significantly reduced in MDT-treated leprosy patients, while GSH content was increased in these patients. However, SOD and Trolox equivalent antioxidant capacity levels were similar in patients with and without treatment. These data suggest that MDT can reduce the activity of some antioxidant enzyme and influence ROS accumulation, which may induce hematological changes, such as methemoglobinemia in patients with leprosy. We also explored some redox mechanisms associated with DDS and its main oxidative metabolite DDS-NHOH and we explored the possible binding of DDS to the active site of CYP2C19 with the aid of molecular modeling software.


Assuntos
Clofazimina/uso terapêutico , Dapsona/uso terapêutico , Hanseníase/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Rifampina/uso terapêutico , Adulto , Análise de Variância , Catalase/sangue , Citocromo P-450 CYP2C19/metabolismo , Dapsona/sangue , Dapsona/metabolismo , Quimioterapia Combinada , Feminino , Glutationa/sangue , Corpos de Heinz/efeitos dos fármacos , Corpos de Heinz/metabolismo , Humanos , Hansenostáticos/uso terapêutico , Hanseníase/sangue , Masculino , Metemoglobina/metabolismo , Pessoa de Meia-Idade , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/sangue , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
J Cereb Blood Flow Metab ; 33(9): 1386-93, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23715062

RESUMO

The NT2.D1 cell line is one of the most well-documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of the neuronal cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time that human stem cell-derived astrocytes produce glycogen and that co-cultures of these cells demonstrate a functional astrocyte-neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake, which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2-derived neurons and astrocytes, we have shown that these cells modulate their glucose uptake in response to glutamate. Additionally, we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown after treatment with glutamate, potassium, isoproterenol, and dbcAMP. Together, these results demonstrate for the first time a functional ANLS in a human stem cell-derived co-culture.


Assuntos
Astrócitos/metabolismo , Comunicação Celular/fisiologia , Ácido Glutâmico/metabolismo , Ácido Láctico/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Astrócitos/citologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Rede Nervosa/citologia , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...