Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 14(676)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785612

RESUMO

Aberrant changes in gene expression underlie the pathogenesis and progression of pressure-overload heart failure, leading to maladaptive cardiac hypertrophy, ventricular remodeling, and contractile dysfunction. Signaling through the G protein Gq triggers maladaptation and heart failure, in part through the activation of G protein-coupled receptor kinase 5 (GRK5). Hypertrophic stimuli induce the accumulation of GRK5 in the nuclei of cardiomyocytes, where it regulates pathological gene expression through multiple transcription factors including NFAT. The nuclear targeting of GRK5 is mediated by an amino-terminal (NT) domain that binds to calmodulin (CaM). Here, we sought to prevent GRK5-mediated pathology in pressure-overload maladaptation and heart failure by expressing in cardiomyocytes a peptide encoding the GRK5 NT (GRK5nt) that encompasses the CaM binding domain. In cultured cardiomyocytes, GRK5nt expression abrogated Gq-coupled receptor-mediated hypertrophy, including attenuation of pathological gene expression and the transcriptional activity of NFAT and NF-κB. We confirmed that GRK5nt bound to and blocked Ca2+-CaM from associating with endogenous GRK5, thereby preventing GRK5 nuclear accumulation after pressure overload. We generated mice that expressed GRKnt in a cardiac-specific fashion (TgGRK5nt mice), which exhibited reduced cardiac hypertrophy, ventricular dysfunction, pulmonary congestion, and cardiac fibrosis after chronic transverse aortic constriction. Together, our data support a role for GRK5nt as an inhibitor of pathological GRK5 signaling that prevents heart failure.


Assuntos
Cardiomegalia , Quinase 5 de Receptor Acoplado a Proteína G/genética , Insuficiência Cardíaca , Animais , Calmodulina/metabolismo , Cardiomegalia/genética , Núcleo Celular/metabolismo , Insuficiência Cardíaca/genética , Camundongos , Miócitos Cardíacos/metabolismo
2.
Circulation ; 142(9): 882-898, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640834

RESUMO

BACKGROUND: Cardiac hypertrophic growth is mediated by robust changes in gene expression and changes that underlie the increase in cardiomyocyte size. The former is regulated by RNA polymerase II (pol II) de novo recruitment or loss; the latter involves incremental increases in the transcriptional elongation activity of pol II that is preassembled at the transcription start site. The differential regulation of these distinct processes by transcription factors remains unknown. Forkhead box protein O1 (FoxO1) is an insulin-sensitive transcription factor that is also regulated by hypertrophic stimuli in the heart. However, the scope of its gene regulation remains unexplored. METHODS: To address this, we performed FoxO1 chromatin immunoprecipitation-deep sequencing in mouse hearts after 7 days of isoproterenol injections (3 mg·kg-1·mg-1), transverse aortic constriction, or vehicle injection/sham surgery. RESULTS: Our data demonstrate increases in FoxO1 chromatin binding during cardiac hypertrophic growth, which positively correlate with extent of hypertrophy. To assess the role of FoxO1 on pol II dynamics and gene expression, the FoxO1 chromatin immunoprecipitation-deep sequencing results were aligned with those of pol II chromatin immunoprecipitation-deep sequencing across the chromosomal coordinates of sham- or transverse aortic constriction-operated mouse hearts. This uncovered that FoxO1 binds to the promoters of 60% of cardiac-expressed genes at baseline and 91% after transverse aortic constriction. FoxO1 binding is increased in genes regulated by pol II de novo recruitment, loss, or pause-release. In vitro, endothelin-1- and, in vivo, pressure overload-induced cardiomyocyte hypertrophic growth is prevented with FoxO1 knockdown or deletion, which was accompanied by reductions in inducible genes, including Comtd1 in vitro and Fstl1 and Uck2 in vivo. CONCLUSIONS: Together, our data suggest that FoxO1 may mediate cardiac hypertrophic growth via regulation of pol II de novo recruitment and pause-release; the latter represents the majority (59%) of FoxO1-bound, pol II-regulated genes after pressure overload. These findings demonstrate the breadth of transcriptional regulation by FoxO1 during cardiac hypertrophy, information that is essential for its therapeutic targeting.


Assuntos
Cardiomegalia/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteína Forkhead Box O1/metabolismo , Uridina Quinase/metabolismo , Animais , Cardiomegalia/genética , Proteínas Relacionadas à Folistatina/genética , Proteína Forkhead Box O1/genética , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Uridina Quinase/genética
3.
Proc Natl Acad Sci U S A ; 116(32): 15895-15900, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337679

RESUMO

G protein-coupled receptor (GPCR) kinases (GRKs) are responsible for initiating desensitization of activated GPCRs. GRK5 is potently inhibited by the calcium-sensing protein calmodulin (CaM), which leads to nuclear translocation of GRK5 and promotion of cardiac hypertrophy. Herein, we report the architecture of the Ca2+·CaM-GRK5 complex determined by small-angle X-ray scattering and negative-stain electron microscopy. Ca2+·CaM binds primarily to the small lobe of the kinase domain of GRK5 near elements critical for receptor interaction and membrane association, thereby inhibiting receptor phosphorylation while activating the kinase for phosphorylation of soluble substrates. To define the role of each lobe of Ca2+·CaM, we utilized the natural product malbrancheamide as a chemical probe to show that the C-terminal lobe of Ca2+·CaM regulates membrane binding while the N-terminal lobe regulates receptor phosphorylation and kinase domain activation. In cells, malbrancheamide attenuated GRK5 nuclear translocation and effectively blocked the hypertrophic response, demonstrating the utility of this natural product and its derivatives in probing Ca2+·CaM-dependent hypertrophy.


Assuntos
Produtos Biológicos/química , Calmodulina/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Cálcio/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Quinase 5 de Receptor Acoplado a Proteína G/química , Hipertrofia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Transporte Proteico/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
4.
Pharmacol Res ; 110: 52-64, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180008

RESUMO

Heart failure (HF) is a global epidemic with the highest degree of mortality and morbidity of any disease presently studied. G protein-coupled receptors (GPCRs) are prominent regulators of cardiovascular function. Activated GPCRs are "turned off" by GPCR kinases (GRKs) in a process known as "desensitization". GRKs 2 and 5 are highly expressed in the heart, and known to be upregulated in HF. Over the last 20 years, both GRK2 and GRK5 have been demonstrated to be critical mediators of the molecular alterations that occur in the failing heart. In the present review, we will highlight recent findings that further characterize "non-canonical" GRK signaling observed in HF. Further, we will also present potential therapeutic strategies (i.e. small molecule inhibition, microRNAs, gene therapy) that may have potential in combating the deleterious effects of GRKs in HF.


Assuntos
Sistema Cardiovascular/enzimologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/enzimologia , Animais , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Inibidores Enzimáticos/uso terapêutico , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 5 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 5 de Receptor Acoplado a Proteína G/genética , Terapia Genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , MicroRNAs/uso terapêutico , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Circulation ; 130(20): 1800-11, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25205804

RESUMO

BACKGROUND: Enhanced arginine vasopressin levels are associated with increased mortality during end-stage human heart failure, and cardiac arginine vasopressin type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased ß-adrenergic receptor (ßAR) responsiveness. This led us to hypothesize that V1AR signaling regulates ßAR responsiveness and in doing so contributes to development of heart failure. METHODS AND RESULTS: Transaortic constriction resulted in decreased cardiac function and ßAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased ßAR ligand affinity, as well as ßAR-induced Ca(2+) mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of ßAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/G protein receptor kinase-dependent manner. CONCLUSIONS: This newly discovered relationship between cardiac V1AR and ßAR may be informative for the treatment of patients with acute decompensated heart failure and elevated arginine vasopressin.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Contração Miocárdica/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores de Vasopressinas/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Arginina Vasopressina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cardiomiopatia Hipertrófica/complicações , Gatos , Linhagem Celular Tumoral , Colforsina/farmacologia , AMP Cíclico/biossíntese , Quinases de Receptores Acoplados a Proteína G/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Genes Reporter , Células HEK293 , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Indóis/farmacologia , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Contração Miocárdica/efeitos dos fármacos , Pirrolidinas/farmacologia , Receptores de Vasopressinas/biossíntese , Receptores de Vasopressinas/genética , Proteínas Recombinantes de Fusão/metabolismo , Rolipram/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos
6.
J Cell Physiol ; 229(11): 1697-702, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24623017

RESUMO

The most common cause of dilated cardiomyopathy and heart failure (HF) is ischemic heart disease; however, in a third of all patients the cause remains undefined and patients are diagnosed as having idiopathic dilated cardiomyopathy (IDC). Recent studies suggest that many patients with IDC have a family history of HF and rare genetic variants in over 35 genes have been shown to be causative of disease. We employed whole-exome sequencing to identify the causative variant in a large family with autosomal dominant transmission of dilated cardiomyopathy. Sequencing and subsequent informatics revealed a novel 10-nucleotide deletion in the BCL2-associated athanogene 3 (BAG3) gene (Ch10:del 121436332_12143641: del. 1266_1275 [NM 004281]) that segregated with all affected individuals. The deletion predicted a shift in the reading frame with the resultant deletion of 135 amino acids from the C-terminal end of the protein. Consistent with genetic variants in genes encoding other sarcomeric proteins there was a considerable amount of genetic heterogeneity in the affected family members. Interestingly, we also found that the levels of BAG3 protein were significantly reduced in the hearts from unrelated patients with end-stage HF undergoing cardiac transplantation when compared with non-failing controls. Diminished levels of BAG3 protein may be associated with both familial and non-familial forms of dilated cardiomyopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatia Dilatada/genética , Mutação/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Sequência de Bases , Família , Feminino , Insuficiência Cardíaca/genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
7.
Mol Pharmacol ; 84(2): 227-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23690069

RESUMO

Circulating levels of arginine vasopressin (AVP) are elevated during hypovolemia and during cardiac stress. AVP activates arginine vasopressin type 1A (V(1A))/Gα(q)-coupled receptors in the heart and vasculature and V(2)/Gα(s)-coupled receptors in the kidney. However, little is known regarding the signaling pathways that influence the effects of V(1A) receptor (V(1A)R) activation during cellular injury. Using hypoxia-reoxygenation (H/R) as a cell injury model, we evaluated cell survival and caspase 3/7 activity in H9c2 myoblasts after treatment with AVP. Pretreatment of H9c2 cells with AVP significantly reduced H/R-induced cell death and caspase 3/7 activity, effects that were blocked via both selective V(1A)R inhibition and mitogen-activated protein kinase (MEK1/2) inhibition. AVP increased extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation in a concentration-dependent manner that was sensitive to MEK1/2 inhibition and V(1A)R inhibition, but not V(1B)R or V(2)R inhibition. Discrete elements of the V(1A)/Gα(q)-protein kinase C (PKC) and V(1A)/G protein-coupled receptor kinase (GRK)/ß-arrestin signaling cascades were inhibited to dissect the pathways responsible for the protective effects of V(1A)R signaling: Gα(q) (overexpression of Gq-I-ires-green fluorescent protein), PKC (administration of Ro 31-82425; 2-[8-(aminomethyl)-6,7,8,9-tetrahydropyrido[1,2-a]indol-3-yl]-3-(1-methyl-1H-indol-3-yl)maleimide, HCl, bisindolylmaleimide X, HCl), GRK2 [C-terminal GRK2 peptide overexpression and small interfering RNA (siRNA) knockdown], GRK5 (siRNA knockdown), and ß-arrestin1 (siRNA knockdown). These studies demonstrated that both Gα(q)/PKC- and GRK2/ß-arrestin1-dependent V(1A)R signaling were capable of inducing ERK1/2 phosphorylation in response to AVP stimulation. However, AVP-mediated protection against H/R was elicited only via GRK2- and ß-arrestin1-dependent signaling. These results suggest that activation of the V(1A)R in H9c2 cells mediates protective signaling via a GRK2/ß-arrestin1/ERK1/2-dependent mechanism that leads to decreased caspase 3/7 activity and enhanced survival under conditions of ischemic stress.


Assuntos
Arginina Vasopressina/farmacologia , Arrestinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mioblastos/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Ratos , Receptores de Vasopressinas/metabolismo , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...