Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Equine Vet Sci ; 87: 102841, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32172902

RESUMO

All epididymal regions are lined with multiple epithelial cell types, each with different functions to provide the luminal environment for spermatozoal maturation. Epithelial cells also create apical blebs, which are released from the apical surface via apocrine secretion and disintegrate in the lumen, thereby releasing epididymosomes. Epididymosomes transport proteins to spermatozoa and contain microRNAs. We hypothesized that epididymosomes also transfer miRNA from epididymal epithelium to spermatozoa. Quantitative real-time polymerase chain reaction was used to determine miRNA profiles of epididymal tissue from caput and cauda, epididymal spermatozoa from caput and cauda, and epididymosomes and from caput, proximal corpus, distal corpus, and cauda. Pathway analysis was performed using DIANA tools on the miRNA unique to caudal spermatozoa. We found 66 newly acquired miRNAs in spermatozoa located in the caudal epididymis. Predicted pathways targeted by these miRNAs suggest a role in cell motility and viability and factors in oocyte and embryo maturation and development. These findings suggest that miRNAs are transported to spermatozoa from epididymal epithelium via epididymosomes.


Assuntos
Epididimo , MicroRNAs , Animais , Epitélio , Cavalos , Masculino , MicroRNAs/genética , Maturação do Esperma , Espermatozoides
2.
J Equine Vet Sci ; 77: 98-106, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133326

RESUMO

The gastrointestinal microbiota (GIM) plays an essential role in maintaining intestinal homeostasis with disruptions having profound effects on the wellbeing of the host animal. Parasitic infection is a long-standing issue for the equine industry, and the use of anthelmintic drugs for parasite control has long been standard practice. The impact of anthelmintic treatment on the GIM in healthy horses is not well known. This study evaluated the hypothesis that anthelmintic administration will alter the equine fecal microbiota in horses without an observed helminth infection. Ten horses were treated with a single dose of QUEST PLUS (active ingredients: Moxidectin and Praziquantel) (Zoetis), and fecal samples were collected before and after treatment. Amplicon sequencing data were quality filtered, processed, and analyzed using QIIME2. Anthelmintic treatment corresponded with a small but significant decrease in alpha diversity (P-value < .05). Analysis of taxonomic abundances before and after treatment with DESeq2 identified 21 features that were significantly different after treatment (Padj-value < .05). Differences in beta diversity associated with treatment were not significant and potentially suggest factors unique to the individual may play an essential role in the specific responses observed. Overall, the present study does not indicate a broad, large-scale impact on the GIM after anthelmintic treatment. The results do, however, suggest the potential of individualized responses that are based instead on host factors. Identification of these factors and investigation of their impact on the host/microbiota relationship will contribute significantly to our understanding of the role of the microbiome in horse health.


Assuntos
Anti-Helmínticos/uso terapêutico , Microbioma Gastrointestinal , Doenças dos Cavalos/tratamento farmacológico , Microbiota , Animais , Fezes , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA