Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 1(5): 337-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22384344

RESUMO

Maize is unique among cereal grasses because of its monoecious flowering habit. Male flowers are normally restricted to the tassel that terminates the primary shoot, whereas female flowers occur as ears at the terminal nodes of lateral branches. We observed Ki14, a tropical maize inbred that produces an ear tipped by a staminate (male) spike under certain environmental conditions, such as long daylengths. Recombinant inbred lines derived from the cross between temperate line B97, which was never observed to produce a staminate ear tip, and Ki14 segregated for the trait under long daylengths. Some progeny lines that had even longer staminate tips than Ki14 were male fertile. We mapped three QTL controlling staminate ear tip using a two-part (binomial plus normal) model. A major QTL on chromosome 3 had a large effect on penetrance of the trait (whether a line would produce staminate ear tips or not) as well as its severity (the length of the staminate tip). This QTL seems to be linked to, but at a distinct position from, a previously mapped QTL controlling the proportion of staminate florets in ears in progeny from crosses between maize and teosinte. Two additional QTL affecting staminate ear tip severity overlapped with QTL controlling photoperiod response previously mapped in this population. Alleles conferring photoperiod sensitivity for delayed flowering at these QTL seem to enhance the production of staminate ear tips under long daylengths.

2.
Phytopathology ; 100(1): 72-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19968551

RESUMO

Southern leaf blight (SLB), gray leaf spot (GLS), and northern leaf blight (NLB) are all important foliar diseases impacting maize production. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to these diseases in a maize recombinant inbred line (RIL) population derived from a cross between maize lines Ki14 and B73, and to evaluate the evidence for the presence genes or loci conferring multiple disease resistance (MDR). Each disease was scored in multiple separate trials. Highly significant correlations between the resistances and the three diseases were found. The highest correlation was identified between SLB and GLS resistance (r = 0.62). Correlations between resistance to each of the diseases and time to flowering were also highly significant. Nine, eight, and six QTL were identified for SLB, GLS, and NLB resistance, respectively. QTL for all three diseases colocalized in bin 1.06, while QTL colocalizing for two of the three diseases were identified in bins 1.08 to 1.09, 2.02/2.03, 3.04/3.05, 8.05, and 10.05. QTL for time to flowering were also identified at four of these six loci (bins 1.06, 3.04/3.05, 8.05, and 10.05). No disease resistance QTL was identified at the largest-effect QTL for flowering time in bin 10.03.


Assuntos
Imunidade Inata/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Fungos/crescimento & desenvolvimento , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/microbiologia
3.
Genetics ; 184(3): 799-812, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20008571

RESUMO

Variation in maize for response to photoperiod is related to geographical adaptation in the species. Maize possesses homologs of many genes identified as regulators of flowering time in other species, but their relation to the natural variation for photoperiod response in maize is unknown. Candidate gene sequences were mapped in four populations created by crossing two temperate inbred lines to two photoperiod-sensitive tropical inbreds. Whole-genome scans were conducted by high-density genotyping of the populations, which were phenotyped over 3 years in both short- and long-day environments. Joint multiple population analysis identified genomic regions controlling photoperiod responses in flowering time, plant height, and total leaf number. Four key genome regions controlling photoperiod response across populations were identified, referred to as ZmPR1-4. Functional allelic differences within these regions among phenotypically similar founders suggest distinct evolutionary trajectories for photoperiod adaptation in maize. These regions encompass candidate genes CCA/LHY, CONZ1, CRY2, ELF4, GHD7, VGT1, HY1/SE5, TOC1/PRR7/PPD-1, PIF3, ZCN8, and ZCN19.


Assuntos
Adaptação Fisiológica/genética , Alelos , Genes de Plantas/genética , Variação Genética , Fotoperíodo , Zea mays/genética , Cruzamentos Genéticos , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA