Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 90(4): 1363-1379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246420

RESUMO

PURPOSE: The aim of this study is to develop and optimize an adiabatic T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ ( T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ ) mapping method for robust quantification of spin-lock (SL) relaxation in the myocardium at 3T. METHODS: Adiabatic SL (aSL) preparations were optimized for resilience against B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities using Bloch simulations. Optimized B 0 $$ {\mathrm{B}}_0 $$ -aSL, Bal-aSL and B 1 $$ {\mathrm{B}}_1 $$ -aSL modules, each compensating for different inhomogeneities, were first validated in phantom and human calf. Myocardial T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ mapping was performed using a single breath-hold cardiac-triggered bSSFP-based sequence. Then, optimized T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparations were compared to each other and to conventional SL-prepared T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ maps (RefSL) in phantoms to assess repeatability, and in 13 healthy subjects to investigate image quality, precision, reproducibility and intersubject variability. Finally, aSL and RefSL sequences were tested on six patients with known or suspected cardiovascular disease and compared with LGE, T 1 $$ {\mathrm{T}}_1 $$ , and ECV mapping. RESULTS: The highest T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparation efficiency was obtained in simulations for modules comprising 2 HS pulses of 30 ms each. In vivo T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps yielded significantly higher quality than RefSL maps. Average myocardial T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ values were 183.28 ± $$ \pm $$ 25.53 ms, compared with 38.21 ± $$ \pm $$ 14.37 ms RefSL-prepared T 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ . T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps showed a significant improvement in precision (avg. 14.47 ± $$ \pm $$ 3.71% aSL, 37.61 ± $$ \pm $$ 19.42% RefSL, p < 0.01) and reproducibility (avg. 4.64 ± $$ \pm $$ 2.18% aSL, 47.39 ± $$ \pm $$ 12.06% RefSL, p < 0.0001), with decreased inter-subject variability (avg. 8.76 ± $$ \pm $$ 3.65% aSL, 51.90 ± $$ \pm $$ 15.27% RefSL, p < 0.0001). Among aSL preparations, B 0 $$ {\mathrm{B}}_0 $$ -aSL achieved the better inter-subject variability. In patients, B 1 $$ {\mathrm{B}}_1 $$ -aSL preparations showed the best artifact resilience among the adiabatic preparations. T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ times show focal alteration colocalized with areas of hyper-enhancement in the LGE images. CONCLUSION: Adiabatic preparations enable robust in vivo quantification of myocardial SL relaxation times at 3T.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Coração/diagnóstico por imagem , Miocárdio , Suspensão da Respiração , Imagens de Fantasmas
2.
Sci Rep ; 12(1): 21586, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517656

RESUMO

This work highlights the importance of the Geogenic Radon Potential (GRP) component originated by degassing processes in fault zones. This Tectonically Enhanced Radon (TER) can increase radon concentration in soil gas and the inflow of radon in the buildings (Indoor Radon Concentrations, IRC). Although tectonically related radon enhancement is known in areas characterised by active faults, few studies have investigated radon migration processes in non-active fault zones. The Pusteria Valley (Bolzano, north-eastern Italy) represents an ideal geological setting to study the role of a non-seismic fault system in enhancing the geogenic radon. Here, most of the municipalities are characterised by high IRC. We performed soil gas surveys in three of these municipalities located along a wide section of the non-seismic Pusteria fault system characterised by a dense network of faults and fractures. Results highlight the presence of high Rn concentrations (up to 800 kBq·m-3) with anisotropic spatial patterns oriented along the main strike of the fault system. We calculated a Radon Activity Index (RAI) along north-south profiles across the Pusteria fault system and found that TER is linked to high fault geochemical activities. This evidence confirms that TER constitutes a significant component of GRP also along non-seismic faults.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Radônio/análise , Poluentes Radioativos do Solo/análise , Monitoramento de Radiação/métodos , Solo , Geologia , Poluentes Radioativos do Ar/análise
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1690-1693, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085994

RESUMO

Magnetic Resonance Imaging (MRI) is the clinical gold standard for the assessment of myocardial viability but requires injection of exogenous gadolinium-based contrast agents. Recently, T1ρ-mapping has been proposed as a fully non-invasive alternative for imaging myocardial fibrosis without the need for contrast agent injection. However, its applicability at high fields is hindered by susceptibility to MRI system imperfections, such as inhomogeneities in the B0 and B1+ fields. In this work we propose a single breath-hold ECG-triggered single-shot bSSFP sequence to enable T1ρ-mapping in vivo at 3T. Adiabatic T1ρ preparations are evaluated to reduce B0 and B1+ sensitivity in comparison with conventional spin-lock (SL) modules. Numerical Bloch simulations were performed to identify optimal parameters for the adiabatic pulses. Experiments yield T1ρ values in the myocardium equal to 48.13±54.08 ms for the best adiabatic preparation and 16.01±20.75 ms for the reference non-adiabatic SL, with 26.91% against 89.74% relative difference in T1ρ values across two shimming conditions. Both phantom and in vivo measurements show increased myocardium/blood contrast and improved resilience against system imperfections compared to non-adiabatic T1ρ preparations, enabling the use at 3T. Clinical relevance- Adiabatically-prepared T1ρ-mapping sequences form a promising candidate for non-contrast evaluation of ischemic and non-ischemic cardiomyopathies at 3T.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
4.
Microsyst Nanoeng ; 8: 107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176270

RESUMO

Multimodal platforms combining electrical neural recording and stimulation, optogenetics, optical imaging, and magnetic resonance (MRI) imaging are emerging as a promising platform to enhance the depth of characterization in neuroscientific research. Electrically conductive, optically transparent, and MRI-compatible electrodes can optimally combine all modalities. Graphene as a suitable electrode candidate material can be grown via chemical vapor deposition (CVD) processes and sandwiched between transparent biocompatible polymers. However, due to the high graphene growth temperature (≥ 900 °C) and the presence of polymers, fabrication is commonly based on a manual transfer process of pre-grown graphene sheets, which causes reliability issues. In this paper, we present CVD-based multilayer graphene electrodes fabricated using a wafer-scale transfer-free process for use in optically transparent and MRI-compatible neural interfaces. Our fabricated electrodes feature very low impedances which are comparable to those of noble metal electrodes of the same size and geometry. They also exhibit the highest charge storage capacity (CSC) reported to date among all previously fabricated CVD graphene electrodes. Our graphene electrodes did not reveal any photo-induced artifact during 10-Hz light pulse illumination. Additionally, we show here, for the first time, that CVD graphene electrodes do not cause any image artifact in a 3T MRI scanner. These results demonstrate that multilayer graphene electrodes are excellent candidates for the next generation of neural interfaces and can substitute the standard conventional metal electrodes. Our fabricated graphene electrodes enable multimodal neural recording, electrical and optogenetic stimulation, while allowing for optical imaging, as well as, artifact-free MRI studies.

5.
Front Cardiovasc Med ; 9: 826283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310962

RESUMO

Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.

6.
Sci Total Environ ; 808: 152064, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863751

RESUMO

The assessment of potential radon-hazardous environments is nowadays a critical issue in planning, monitoring, and developing appropriate mitigation strategies. Although some geological structures (e.g., fault systems) and other geological factors (e.g., radionuclide content, soil organic or rock weathering) can locally affect the radon occurrence, at the basis of a good implementation of radon-safe systems, optimized modelling at territorial scale is required. The use of spatial regression models, adequately combining different types of predictors, represents an invaluable tool to identify the relationships between radon and its controlling factors as well as to construct Geogenic Radon Potential (GRP) maps of an area. In this work, two GRP maps were developed based on field measurements of soil gas radon and thoron concentrations and gamma spectrometry of soil and rock samples of the Euganean Hills (northern Italy) district. A predictive model of radon concentration in soil gas was reconstructed taking into account the relationships among the soil gas radon and seven predictors: terrestrial gamma dose radiation (TGDR), thoron (220Rn), fault density (FD), soil permeability (PERM), digital terrain model (SLOPE), moisture index (TMI), heat load index (HLI). These predictors allowed to elaborate local spatial models by using the Empirical Bayesian Regression Kriging (EBRK) in order to find the best combination and define the GRP of the Euganean Hills area. A second GRP map based on the Neznal approach (GRPNEZ) has been modelled using the TGDR and 220Rn, as predictors of radon concentration, and FD as predictor of soil permeability. Then, the two GRP maps have been compared. Results highlight that the radon potential is mainly driven by the bedrock type but the presence of fault systems and topographic features play a key role in radon migration in the subsoil and its exhalation at the soil/atmosphere boundary.


Assuntos
Poluentes Radioativos do Ar , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Solo , Poluentes Radioativos do Ar/análise , Teorema de Bayes , Radônio/análise , Poluentes Radioativos do Solo/análise , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...