Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 46(16): 5320-5325, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28382345

RESUMO

We report a detailed study of the host-guest interaction for a cationic metal-organic framework that can reversibly capture perchlorate. The structural transformation and flexibility of silver 4,4'-bipyridine nitrate (SBN) upon formation of silver 4,4'-bipyridine perchlorate (SBP) was evaluated by monitoring the anion exchange dynamics using a combination of powder X-ray diffraction (PXRD) with multinuclear 13C, 15N and 109Ag solid-state NMR spectra at different time intervals of the anion exchange. The structural transformation from SBN to SBP is complete within 70 minutes and was determined to take place by a solvent-mediated process. This pathway is confirmed by the morphological changes of the two crystalline materials observed by SEM. This key understanding may lead to application of this material towards perchlorate capture.

2.
Environ Sci Technol ; 50(4): 1949-54, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26765213

RESUMO

We report the capture of ppm-level aqueous perchlorate in record capacity and kinetics via the complete anion exchange of a cationic metal-organic framework. Ambient conditions were used for both the synthesis of silver 4,4'-bipyridine nitrate (SBN) and the exchange, forming silver 4,4'-bipyridine perchlorate (SBP). The exchange was complete within 90 min, and the capacity was 354 mg/g, representing 99% removal. These values are greater than current anion exchangers such as the resins Amberlite IRA-400 (249 mg/g), Purolite A530E (104 mg/g), and layered double hydroxides (28 mg/g). Moreover, unlike resins and layered double hydroxides, SBN is fully reusable and displays 96% regeneration to SBN in nitrate solution, with new crystal formation allowing the indefinite cycling for perchlorate. We show seven cycles as proof of concept. Perchlorate contamination of water represents a serious health threat because it is a thyroid endocrine disruptor. This noncomplexing anionic pollutant is significantly mobile and environmentally persistent. Removal of other anionic pollutants from water such as chromate, pertechnetate, or arsenate may be possible by this methodology.


Assuntos
Resinas de Troca de Cátion/química , Metais/química , Percloratos/química , Purificação da Água/métodos , Água/química , Hidróxidos/química , Cinética , Nitratos , Soluções , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...