Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 41(1): 2364721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38880496

RESUMO

PURPOSE: To use computational modeling to provide a complete and logical description of the electrical and thermal behavior during stereoelectroencephalography-guided (SEEG) radiofrequency thermo-coagulation (RF-TC). METHODS: A coupled electrical-thermal model was used to obtain the temperature distributions in the tissue during RF-TC. The computer model was first validated by an ex vivo model based on liver fragments and later used to study the impact of three different factors on the coagulation zone size: 1) the difference in the tissue surrounding the electrode (gray/white matter), 2) the presence of a peri-electrode gap occupied by cerebrospinal fluid (CSF), and 3) the energy setting used (power-duration). RESULTS: The model built for the experimental validation was able to predict both the evolution of impedance and the short diameter of the coagulation zone (error < 0.01 mm) reasonably well but overestimated the long diameter by 2 - 3 mm. After adapting the model to clinical conditions, the simulation showed that: 1) Impedance roll-off limited the coagulation size but involved overheating (around 100 °C); 2) The type of tissue around the contacts (gray vs. white matter) had a moderate impact on the coagulation size (maximum difference 0.84 mm), and 3) the peri-electrode gap considerably altered the temperature distributions, avoided overheating, although the diameter of the coagulation zone was not very different from the no-gap case (<0.2 mm). CONCLUSIONS: This study showed that computer modeling, especially subject- and scenario-specific modeling, can be used to estimate in advance the electrical and thermal performance of the RF-TC in brain tissue.


Assuntos
Eletrocoagulação , Eletroencefalografia , Eletrocoagulação/métodos , Humanos , Eletroencefalografia/métodos , Eletrodos , Simulação por Computador
2.
Chaos ; 34(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717398

RESUMO

We use a multiscale symbolic approach to study the complex dynamics of temporal lobe refractory epilepsy employing high-resolution intracranial electroencephalogram (iEEG). We consider the basal and preictal phases and meticulously analyze the dynamics across frequency bands, focusing on high-frequency oscillations up to 240 Hz. Our results reveal significant periodicities and critical time scales within neural dynamics across frequency bands. By bandpass filtering neural signals into delta, theta, alpha, beta, gamma, and ripple high-frequency bands (HFO), each associated with specific neural processes, we examine the distinct nonlinear dynamics. Our method introduces a reliable approach to pinpoint intrinsic time lag scales τ within frequency bands of the basal and preictal signals, which are crucial for the study of refractory epilepsy. Using metrics such as permutation entropy (H), Fisher information (F), and complexity (C), we explore nonlinear patterns within iEEG signals. We reveal the intrinsic τmax that maximize complexity within each frequency band, unveiling the nonlinear subtle patterns of the temporal structures within the basal and preictal signal. Examining the H×F and C×F values allows us to identify differences in the delta band and a band between 200 and 220 Hz (HFO 6) when comparing basal and preictal signals. Differences in Fisher information in the delta and HFO 6 bands before seizures highlight their role in capturing important system dynamics. This offers new perspectives on the intricate relationship between delta oscillations and HFO waves in patients with focal epilepsy, highlighting the importance of these patterns and their potential as biomarkers.


Assuntos
Biomarcadores , Ritmo Delta , Humanos , Biomarcadores/metabolismo , Ritmo Delta/fisiologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Processamento de Sinais Assistido por Computador , Masculino , Dinâmica não Linear , Feminino , Adulto , Epilepsia do Lobo Temporal/fisiopatologia
3.
Chaos ; 32(9): 093151, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36182366

RESUMO

Intracranial electroencephalography (iEEG) can directly record local field potentials (LFPs) from a large set of neurons in the vicinity of the electrode. To search for possible epileptic biomarkers and to determine the epileptogenic zone that gives rise to seizures, we investigated the dynamics of basal and preictal signals. For this purpose, we explored the dynamics of the recorded time series for different frequency bands considering high-frequency oscillations (HFO) up to 240 Hz. We apply a Hilbert transform to study the amplitude and phase of the signals. The dynamics of the different frequency bands in the time causal entropy-complexity plane, H × C, is characterized by comparing the dynamical evolution of the basal and preictal time series. As the preictal states evolve closer to the time in which the epileptic seizure starts, the, H × C, dynamics changes for the higher frequency bands. The complexity evolves to very low values and the entropy becomes nearer to its maximal value. These quasi-stable states converge to equiprobable states when the entropy is maximal, and the complexity is zero. We could, therefore, speculate that in this case, it corresponds to the minimization of Gibbs free energy. In this case, the maximum entropy is equivalent to the principle of minimum consumption of resources in the system. We can interpret this as the nature of the system evolving temporally in the preictal state in such a way that the consumption of resources by the system is minimal for the amplitude in frequencies between 220-230 and 230-240 Hz.


Assuntos
Eletroencefalografia , Epilepsia , Biomarcadores , Entropia , Humanos , Convulsões
4.
Front Neurol ; 12: 613967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692740

RESUMO

Introduction: Several methods offer free volumetry services for MR data that adequately quantify volume differences in the hippocampus and its subregions. These methods are frequently used to assist in clinical diagnosis of suspected hippocampal sclerosis in temporal lobe epilepsy. A strong association between severity of histopathological anomalies and hippocampal volumes was reported using MR volumetry with a higher diagnostic yield than visual examination alone. Interpretation of volumetry results is challenging due to inherent methodological differences and to the reported variability of hippocampal volume. Furthermore, normal morphometric differences are recognized in diverse populations that may need consideration. To address this concern, we highlighted procedural discrepancies including atlas definition and computation of total intracranial volume that may impact volumetry results. We aimed to quantify diagnostic performance and to propose reference values for hippocampal volume from two well-established techniques: FreeSurfer v.06 and volBrain-HIPS. Methods: Volumetry measures were calculated using clinical T1 MRI from a local population of 61 healthy controls and 57 epilepsy patients with confirmed unilateral hippocampal sclerosis. We further validated the results by a state-of-the-art machine learning classification algorithm (Random Forest) computing accuracy and feature relevance to distinguish between patients and controls. This validation process was performed using the FreeSurfer dataset alone, considering morphometric values not only from the hippocampus but also from additional non-hippocampal brain regions that could be potentially relevant for group classification. Mean reference values and 95% confidence intervals were calculated for left and right hippocampi along with hippocampal asymmetry degree to test diagnostic accuracy. Results: Both methods showed excellent classification performance (AUC:> 0.914) with noticeable differences in absolute (cm3) and normalized volumes. Hippocampal asymmetry was the most accurate discriminator from all estimates (AUC:1~0.97). Similar results were achieved in the validation test with an automatic classifier (AUC:>0.960), disclosing hippocampal structures as the most relevant features for group differentiation among other brain regions. Conclusion: We calculated reference volumetry values from two commonly used methods to accurately identify patients with temporal epilepsy and hippocampal sclerosis. Validation with an automatic classifier confirmed the principal role of the hippocampus and its subregions for diagnosis.

5.
J Neural Eng ; 18(4)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33578398

RESUMO

Objective.Electrical stimulation mapping (ESM) of the brain using stereo-electroencephalography (SEEG) intracranial electrodes, also known as depth-ESM (DESM), is being used as part of the pre-surgical planning for brain surgery in drug-resistant epilepsy patients. Typically, DESM consists in applying the electrical stimulation using adjacent contacts of the SEEG electrodes and in recording the EEG responses to those stimuli, giving valuable information of critical brain regions to better delimit the region to resect. However, the spatial extension or coverage of the stimulated area is not well defined even though the precise electrode locations can be determined from computed tomography images.Approach.We first conduct electrical simulations of DESM for different shapes of commercial SEEG electrodes showing the stimulation extensions for different intensities of injected current. We then evaluate the performance of DESM in terms of spatial coverage and focality on two realistic head models of real patients undergoing pre-surgical evaluation. We propose a novel strategy for DESM that consist in applying the current using contacts of different SEEG electrodes (x-DESM), increasing the versatility of DESM without implanting more electrodes. We also present a clinical case where x-DESM replicated the full semiology of an epilepsy seizure using a very low-intensity current injection, when typical adjacent DESM only reproduced partial symptoms with much larger intensities. Finally, we show one example of DESM optimal stimulation to achieve maximum intensity, maximum focality or intermediate solution at a pre-defined target, and one example of temporal interference in DESM capable of increasing focality in brain regions not immediately touching the electrode contacts.Main results.It is possible to define novel current injection patterns using contacts of different electrodes (x-DESM) that might improve coverage and/or focality, depending on the characteristics of the candidate brain. If individual simulations are not possible, we provide the estimated radius of stimulation as a function of the injected current and SEEG electrode brand as a reference for the community.Significance.Our results show that subject-specific electrical stimulations are a valuable tool to use in the pre-surgical planning to visualize the extension of the stimulated regions. The methods we present here are also applicable to pre-surgical planning of tumor resections and deep brain stimulation treatments.


Assuntos
Estimulação Encefálica Profunda , Epilepsia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico , Eletrodos Implantados , Eletroencefalografia , Epilepsia/cirurgia , Epilepsia/terapia , Humanos , Técnicas Estereotáxicas
6.
Curr Biol ; 30(6): 1152-1159.e3, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32142694

RESUMO

Experimental findings show the ubiquitous presence of graded responses and tuning curves in the neocortex, particularly in visual areas [1-15]. Among these, inferotemporal-cortex (IT) neurons respond to complex visual stimuli, but differences in the neurons' responses can be used to distinguish the stimuli eliciting the responses [8, 9, 16-18]. The IT projects directly to the medial temporal lobe (MTL) [19], where neurons respond selectively to different pictures of specific persons and even to their written and spoken names [20-22]. However, it is not clear whether this is done through a graded coding, as in the neocortex, or a truly invariant code, in which the response-eliciting stimuli cannot be distinguished from each other. To address this issue, we recorded single neurons during the repeated presentation of different stimuli (pictures and written and spoken names) corresponding to the same persons. Using statistical tests and a decoding approach, we found that only in a minority of cases can the different pictures of a given person be distinguished from the neurons' responses and that in a larger proportion of cases, the responses to the pictures were different to the ones to the written and spoken names. We argue that MTL neurons tend to lack a representation of sensory features (particularly within a sensory modality), which can be advantageous for the memory function attributed to this area [23-25], and that a full representation of memories is given by a combination of mostly invariant coding in the MTL with a representation of sensory features in the neocortex.


Assuntos
Hipocampo/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adulto , Argentina , Mapeamento Encefálico , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Adulto Jovem
7.
Cortex ; 121: 189-200, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31629197

RESUMO

The human insula is known to be involved in auditory processing, but knowledge about its precise functional role and the underlying electrophysiology is limited. To assess its role in automatic auditory deviance detection we analyzed the EEG high frequency activity (HFA; 75-145 Hz) and ERPs from 90 intracranial insular channels across 16 patients undergoing pre-surgical intracranial monitoring for epilepsy treatment. Subjects passively listened to a stream of standard and deviant tones differing in four physical dimensions: intensity, frequency, location or time. HFA responses to auditory stimuli were found in the short and long gyri, and the anterior, superior, and inferior segments of the circular sulcus of the insular cortex. Only a subset of channels in the inferior segment of the circular sulcus of the insula showed HFA deviance detection responses, i.e., a greater and longer latency response to specific deviants relative to standards. Auditory deviancy processing was also later in the insula when compared with the superior temporal cortex. ERP results were more widespread and supported the HFA insular findings. These results provide evidence that the human insula is engaged during auditory deviance detection.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados/fisiologia , Adulto , Atenção/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...