Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Inform ; 7(1): 8, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880784

RESUMO

Interpretation of brain activity responses using motor imagery (MI) paradigms is vital for medical diagnosis and monitoring. Assessed by machine learning techniques, identification of imagined actions is hindered by substantial intra- and inter-subject variability. Here, we develop an architecture of Convolutional Neural Networks (CNN) with an enhanced interpretation of the spatial brain neural patterns that mainly contribute to the classification of MI tasks. Two methods of 2D-feature extraction from EEG data are contrasted: Power Spectral Density and Continuous Wavelet Transform. For preserving the spatial interpretation of extracting EEG patterns, we project the multi-channel data using a topographic interpolation. Besides, we include a spatial dropping algorithm to remove the learned weights that reflect the localities not engaged with the elicited brain response. We evaluate two labeled scenarios of MI tasks: bi-class and three-class. Obtained results in an MI database show that the thresholding strategy combined with Continuous Wavelet Transform improves the accuracy and enhances the interpretability of CNN architecture, showing that the highest contribution clusters over the sensorimotor cortex with a differentiated behavior of rhythms [Formula: see text] and [Formula: see text].

2.
Int J Neural Syst ; 29(2): 1850042, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30415632

RESUMO

The early detection of Alzheimer's disease and quantification of its progression poses multiple difficulties for machine learning algorithms. Two of the most relevant issues are related to missing data and results interpretability. To deal with both issues, we introduce a methodology to predict conversion of mild cognitive impairment patients to Alzheimer's from structural brain MRI volumes. First, we use morphological measures of each brain structure to build an instance-based feature mapping that copes with missed follow-up visits. Then, the extracted multiple feature mappings are combined into a single representation through the convex combination of reproducing kernels. The weighting parameters per structure are tuned based on the maximization of the centered-kernel alignment criterion. We evaluate the proposed methodology on a couple of well-known classification machines employing the ADNI database devoted to assessing the combined prognostic value of several AD biomarkers. The obtained experimental results show that our proposed method of Instance-based representation using multiple kernel learning enables detecting mild cognitive impairment as well as predicting conversion to Alzheimers disease within three years from the initial screening. Besides, the brain structures with larger combination weights are directly related to memory and cognitive functions.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...