Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Rev Sci Instrum ; 87(1): 014701, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827335

RESUMO

We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

3.
Rev Sci Instrum ; 85(11): 114706, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430132

RESUMO

We have developed a modular interconnect platform for the control and readout of multiple solid-state qubits at cryogenic temperatures. The setup provides 74 filtered dc-bias connections, 32 control and readout connections with -3 dB frequency above 5 GHz, and 4 microwave feed lines that allow low loss (less than 3 dB) transmission 10 GHz. The incorporation of a radio-frequency interposer enables the platform to be separated into two printed circuit boards, decoupling the simple board that is bonded to the qubit chip from the multilayer board that incorporates expensive connectors and components. This modular approach lifts the burden of duplicating complex interconnect circuits for every prototype device. We report the performance of this platform at milli-Kelvin temperatures, including signal transmission and crosstalk measurements.

4.
Nat Commun ; 5: 3716, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24759675

RESUMO

The compound semiconductor gallium-arsenide (GaAs) provides an ultra-clean platform for storing and manipulating quantum information, encoded in the charge or spin states of electrons confined in nanostructures. The absence of inversion symmetry in the zinc-blende crystal structure of GaAs however, results in a strong piezoelectric interaction between lattice acoustic phonons and qubit states with an electric dipole, a potential source of decoherence during charge-sensitive operations. Here we report phonon generation in a GaAs double quantum dot, configured as a single- or two-electron charge qubit, and driven by the application of microwaves via surface gates. In a process that is a microwave analogue of the Raman effect, phonon emission produces population inversion of the two-level system and leads to rapid decoherence of the qubit when the microwave energy exceeds the level splitting. Comparing data with a theoretical model suggests that phonon emission is a sensitive function of the device geometry.

5.
Phys Rev Lett ; 110(4): 046805, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166190

RESUMO

We report the dispersive charge-state readout of a double quantum dot in the few-electron regime using the in situ gate electrodes as sensitive detectors. We benchmark this gate sensing technique against the well established quantum point contact charge detector and find comparable performance with a bandwidth of ∼ 10 MHz and an equivalent charge sensitivity of ∼ 6.3 × 10(-3) e/sqrt[Hz]. Dispersive gate sensing alleviates the burden of separate charge detectors for quantum dot systems and promises to enable readout of qubits in scaled-up arrays.

6.
Rev Sci Instrum ; 83(2): 023902, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380102

RESUMO

We have developed a cryogenic platform for the control and readout of spin qubits that comprises a high density of dc and radio frequency sample interconnects based on a set of coupled printed circuit boards. The modular setup incorporates 24 filtered dc lines, 14 control and readout lines with bandwidth from dc to above 6 GHz, and 2 microwave connections for excitation to 40 GHz. We report the performance of this platform, including signal integrity and crosstalk measurements and discuss design criteria for constructing sample interconnect technology needed for multi-qubit devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...