Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114013

RESUMO

Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.


Assuntos
Cianetos/química , Paládio/química , Catálise
2.
J Org Chem ; 85(11): 7378-7385, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32400159

RESUMO

Herein, we report a novel copper-catalyzed imidoylative cross-coupling/cyclocondensation reaction between 2-isocyanobenzoates and amines efficiently producing quinazolin-4-ones. The reaction utilizes Cu(II) acetate as an environmentally benign catalyst in combination with a mild base and proceeds well in anisole, a recommended, sustainable solvent. Additionally, the reaction does not require dry conditions or inert atmospheres for optimal performance. The scope of this isocyanide insertion reaction is rather broad, tolerating various functionalized isocyanobenzoates and a range of substituted amines, although the use of aromatic amines as nucleophiles requires microwave heating.

3.
Org Lett ; 22(3): 914-919, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31942797

RESUMO

A robust nickel-catalyzed oxidative isocyanide insertion/C-H amination by reaction of readily available N-uracil-amidines with isocyanides affording polysubstituted pyrimidouracils has been reported. The reaction proceeds in moderate to quantitative yield, under mild conditions (i.e., green solvent, air atmosphere, moderate temperature). The broad range of structurally diverse isocyanides and N-uracil-amidines that are tolerated make this method an interesting alternative to the currently available procedures toward pyrimidouracils.

4.
Angew Chem Int Ed Engl ; 59(2): 540-558, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31287627

RESUMO

Isocyanides are diverse C1 building blocks considering their potential to react with nucleophiles, electrophiles, and radicals. Therefore, perhaps not surprisingly, isocyanides are highly valuable as inputs for multicomponent reactions (MCRs) and other one-pot cascade processes. In the field of organometallic chemistry, isocyanides typically serve as ligands for transition metals. The coordination of isocyanides to metal centers alters the electronic distribution of the isocyano moiety, and reaction pathways can therefore be accessed that are not possible in the absence of the metal. The tunable reactivity of the isocyanide functional group by transition metals has evolved into numerous useful applications. Especially palladium-catalyzed isocyanide insertion processes have emerged as powerful reactions in the past decade. However, reports on the use of earth-abundant and cheap base metals in these types of transformations are scarce and have received far less attention. In this Minireview, we focus on these emerging base metal catalyzed reactions and highlight their potential in synthetic organic chemistry. Although mechanistic studies are still scarce, we discuss distinct proposed catalytic cycles and categorize the literature according to 1) the (hetero)atom bound to and 2) the type of bonding with the transition metal in which the (formal) insertion occurs.

5.
J Org Chem ; 83(2): 854-861, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29260564

RESUMO

We developed a one-pot, two-stage synthetic route to substituted 4-aminoquinolines involving an imidoylative Sonogashira coupling followed by acid-mediated cyclization. This three-component reaction affords pharmaceutically valuable 4-aminoquinolines in a one-pot procedure from readily available starting materials. The reaction tolerates various substituents on the arene as well as the use of secondary and even primary isocyanides. Additionally, the wide tolerance for functionalized isocyanides allows for the one-pot synthesis of various substituted chloroquine analogues as well as other medicinally relevant products.

6.
Org Biomol Chem ; 15(29): 6132-6135, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28682397

RESUMO

Herein, a two-step MCR-oxidation methodology accessing decorated 2° α-ketoamides and α-ketotetrazoles is described via a catalytic copper(i)-mediated C-N oxidation/acidic hydrolysis of Ugi-three-component and Ugi-azide reaction products. The ability to install diversity from aldehyde and isocyanide synthons allows rapid complexity generation. Of note, (1) 2° α-ketoamides are traditionally difficult to access and more so reminiscent of the endogenous peptide bonds. (2) The route to α-keto-tetrazoles is significantly shorter than that in previous reports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...