Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 372(6538)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33833098

RESUMO

Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.


Assuntos
Carboxiliases/química , Carboxiliases/metabolismo , Chlorella/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Alcanos/metabolismo , Substituição de Aminoácidos , Aminoácidos/metabolismo , Bicarbonatos/metabolismo , Biocatálise , Dióxido de Carbono/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Descarboxilação , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Ligação de Hidrogênio , Luz , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Fótons , Conformação Proteica , Temperatura
2.
Biophys J ; 103(1): 129-36, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22828339

RESUMO

Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.


Assuntos
Bacteriorodopsinas/química , Proteínas Ligantes de Maltose/química , Água/química , Proteínas tau/química , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Difração de Nêutrons , Estrutura Terciária de Proteína
3.
Ann Pharm Fr ; 65(2): 108-18, 2007 Mar.
Artigo em Francês | MEDLINE | ID: mdl-17404544

RESUMO

Acetylcholinesterase is a very rapid enzyme, essential in the process of nerve impulse transmission at cholinergic synapses. It is the target of all currently approved anti-Alzheimer drugs and further progress in the modulation of its activity requires structural as well as dynamical information. Exploration of the conformational energy landscape of a protein by means of X-ray crystallography requires the use of experimental tricks, to overcome the inherently static nature of crystallographic structures. Here we report three experimental approaches that allowed to gain structural insight into the dynamics of acetylcholinesterase, which is relevant for structure-based drug design.


Assuntos
Acetilcolinesterase/química , Doença de Alzheimer/tratamento farmacológico , Animais , Colina/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Cristalografia por Raios X , Desenho de Fármacos , Transferência de Energia , Humanos , Cinética , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...