Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(23): 16838-16847, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350260

RESUMO

Soil is a major receptor of manufactured nanomaterials (NMs) following unintentional releases or intentional uses. Ceria NMs have been shown to undergo biotransformation in plant and soil organisms with a partial Ce(IV) reduction into Ce(III), but the influence of environmentally widespread soil bacteria is poorly understood. We used high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS) with an unprecedented detection limit to assess Ce speciation in a model soil bacterium (Pseudomonas brassicacearum) exposed to CeO2 NMs of different sizes and shapes. The findings revealed that the CeO2 NM's size drives the biotransformation process. No biotransformation was observed for the 31 nm CeO2 NMs, contrary to 7 and 4 nm CeO2 NMs, with a Ce reduction of 64 ± 14% and 70 ± 15%, respectively. This major reduction appeared quickly, from the early exponential bacterial growth phase. Environmentally relevant organic acid metabolites secreted by Pseudomonas, especially in the rhizosphere, were investigated. The 2-keto-gluconic and citric acid metabolites alone were able to induce a significant reduction in 4 nm CeO2 NMs. The high biotransformation measured for <7 nm NMs would affect the fate of Ce in the soil and biota.


Assuntos
Cério , Nanopartículas Metálicas , Nanoestruturas , Tamanho da Partícula , Cério/química , Solo/química , Nanopartículas Metálicas/química , Bactérias
2.
Sci Rep ; 12(1): 18268, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310318

RESUMO

Yttrium (Y) has gained importance in high tech applications and, together with the other rare earth elements (REEs), is also considered to be an emerging environmental pollutant. The alpine plant Saxifraga paniculata was previously shown to display high metal tolerance and an intriguing REE accumulation potential. In this study, we analysed soil grown commercial and wild specimens of Saxifraga paniculata to assess Y accumulation and shed light on the uptake pathway. Laser ablation inductively coupled plasma mass spectrometry and synchrotron-based micro X-ray fluorescence spectroscopy was used to localise Y within the plant tissues and identify colocalized elements. Y was distributed similarly in commercial and wild specimens. Within the roots, Y was mostly located in the epidermis region. Translocation was low, but wild individuals accumulated significantly more Y than commercial ones. In plants of both origins, we observed consistent colocalization of Al, Fe, Y and Ce in all plant parts except for the hydathodes. This indicates a shared pathway during translocation and could explained by the formation of a stable organic complex with citrate, for example. Our study provides important insights into the uptake pathway of Y in S. paniculata, which can be generalised to other plants.


Assuntos
Metais Terras Raras , Saxifragaceae , Humanos , Ítrio/química , Metais Terras Raras/análise , Solo/química , Plantas
3.
Chemosphere ; 287(Pt 4): 132315, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600011

RESUMO

The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.


Assuntos
Brassicaceae , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Metais/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análise
4.
Environ Pollut ; 279: 116897, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774364

RESUMO

It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.


Assuntos
Poluentes do Solo , Solanum melongena , Solanum nigrum , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/química , Poluentes do Solo/análise , Enxofre , Espectroscopia por Absorção de Raios X
5.
Sci Rep ; 8(1): 4408, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535369

RESUMO

In this methodological study, we demonstrated the relevance of 3D imaging performed at various scales for the ex vivo detection and location of cerium oxide nanomaterials (CeO2-NMs) in mouse lung. X-ray micro-computed tomography (micro-CT) with a voxel size from 14 µm to 1 µm (micro-CT) was combined with X-ray nano-computed tomography with a voxel size of 63 nm (nano-CT). An optimized protocol was proposed to facilitate the sample preparation, to minimize the experimental artifacts and to optimize the contrast of soft tissues exposed to metal-based nanomaterials (NMs). 3D imaging of the NMs biodistribution in lung tissues was consolidated by combining a vast variety of techniques in a correlative approach: histological observations, 2D chemical mapping and speciation analysis were performed for an unambiguous detection of NMs. This original methodological approach was developed following a worst-case scenario of exposure, i.e. high dose of exposure with administration via intra-tracheal instillation. Results highlighted both (i) the non-uniform distribution of CeO2-NMs within the entire lung lobe (using large field-of-view micro-CT) and (ii) the detection of CeO2-NMs down to the individual cell scale, e.g. macrophage scale (using nano-CT with a voxel size of 63 nm).


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/patologia , Metais , Nanoestruturas , Animais , Cério , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Análise Espectral , Distribuição Tecidual , Microtomografia por Raio-X
6.
Artigo em Inglês | MEDLINE | ID: mdl-28888877

RESUMO

This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.


Assuntos
Cério/toxicidade , Nanoestruturas/toxicidade , Polímeros/química , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cério/química , Regulação da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanoestruturas/química , Propriedades de Superfície
7.
Environ Sci Technol ; 51(17): 9756-9764, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28777564

RESUMO

The ISO-standardized RHIZOtest is used here for the first time to decipher how plant species, soil properties, and physical-chemical properties of the nanoparticles and their transformation regulate the phytoavailability of nanoparticles. Two plants, tomato and fescue, were exposed to two soils with contrasted properties: a sandy soil poor in organic matter and a clay soil rich in organic matter, both contaminated with 1, 15, and 50 mg·kg-1 of dissolved Ce2(SO4)3, bare and citrate-coated CeO2 nanoparticles. All the results demonstrate that two antagonistic soil properties controlled Ce uptake. The clay fraction enhanced the retention of the CeO2 nanoparticles and hence reduced Ce uptake, whereas the organic matter content enhanced Ce uptake. Moreover, in the soil poor in organic matter, the organic citrate coating significantly enhanced the phytoavailability of the cerium by forming smaller aggregates thereby facilitating the transport of nanoparticles to the roots. By getting rid of the dissimilarities between the root systems of the different plants and the normalizing the surfaces exposed to nanoparticles, the RHIZOtest demonstrated that the species of plant did not drive the phytoavailability, and provided evidence for soil-plant transfers at concentrations lower than those usually cited in the literature and closer to predicted environmental concentrations.


Assuntos
Cério/farmacocinética , Nanopartículas , Poluentes do Solo/farmacocinética , Solanum lycopersicum , Raízes de Plantas , Poaceae , Solo
8.
Environ Pollut ; 212: 299-306, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26854699

RESUMO

This study aimed at determining the fate of trace elements (TE) following soil organic waste (OW) application. We used a unique combination of X-ray absorption spectroscopy analyses, to determine TE speciation, with incubation experiments for in situ monitoring of TE availability patterns over a time course with the technique of the diffusive gradients in thin films (DGT). We showed that copper (Cu) and zinc (Zn) availability were both increased in OW-amended soil, but their release was controlled by distinct mechanisms. Zn speciation in OW was found to be dominated by an inorganic species, i.e. Zn sorbed on Fe oxides. Zn desorption from Fe oxides could explain the increase in Zn availability in OW-amended soil. Cu speciation in OW was dominated by organic species. Cu release through the mineralization of organic carbon from OW was responsible for the increase in Cu availability.


Assuntos
Cobre/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Gerenciamento de Resíduos/métodos , Resíduos/análise , Zinco/análise , Oligoelementos/análise , Espectroscopia por Absorção de Raios X
9.
Environ Pollut ; 196: 239-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463719

RESUMO

Sulfidation is a major transformation product for manufactured silver nanoparticles (Ag-MNPs) in the wastewater treatment process.We studied the dissolution, uptake, and toxicity of Ag-MNP and sulfidized Ag-MNPs (sAg-MNPs) to a model soil organism, Caenorhabditis elegans. Our results show that reproduction was the most sensitive endpoint tested for both Ag-MNPs and sAg-MNPs. We also demonstrate that sulfidation not only decreases solubility of Ag-MNP, but also reduces the bioavailability of intact sAg-MNP. The relative contribution of released Ag(+) compared to intact particles to toxicity was concentration dependent. At lower total Ag concentration, a greater proportion of the toxicity could be explained by dissolved Ag, whereas at higher total Ag concentration, the toxicity appeared to be dominated by particle specific effects.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Disponibilidade Biológica , Caenorhabditis elegans/metabolismo , Nanopartículas Metálicas/análise , Nanopartículas , Prata/análise , Prata/metabolismo , Solo , Solubilidade , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água/análise
10.
Environ Pollut ; 187: 22-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418975

RESUMO

We examined copper (Cu) absorption, distribution and toxicity and the role of a silicon (Si) supplementation in the bamboo Phyllostachys fastuosa. Bamboos were maintained in hydroponics for 4 months and submitted to two different Cu (1.5 and 100 µm Cu(2+)) and Si (0 and 1.1 mM) concentrations. Cu and Si partitioning and Cu speciation were investigated by chemical analysis, microscopic and spectroscopic techniques. Copper was present as Cu(I) and Cu(II) depending on plant parts. Bamboo mainly coped with high Cu exposure by: (i) high Cu sequestration in the root (ii) Cu(II) binding to amino and carboxyl ligands in roots, and (iii) Cu(I) complexation with both organic and inorganic sulfur ligands in stems and leaves. Silicon supplementation decreased the visible damage induced by high Cu exposure and modified Cu speciation in the leaves where a higher proportion of Cu was present as inorganic Cu(I)S compounds, which may be less toxic.


Assuntos
Cobre/análise , Poaceae/fisiologia , Silício/análise , Enxofre/análise , Cobre/metabolismo , Hidroponia , Modelos Químicos , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Poaceae/química , Silício/metabolismo , Enxofre/metabolismo
11.
Environ Sci Technol ; 48(2): 1280-9, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24372151

RESUMO

The objective of this study was to investigate the role of the CeO2 nanoparticle (NP) surface charge and the presence of natural organic matter (NOM) in determining bioavailability and toxicity to the model soil organism Caenorhabditis elegans. We synthesized CeO2-NPs functionalized with positively charged, negatively charged, and neutral coatings. The positively charged CeO2-NPs were significantly more toxic to C. elegans and bioaccumulated to a greater extent than the neutral and negatively charged CeO2-NPs. Surface charge also affected the oxidation state of Ce in C. elegans tissues after uptake. Greater reduction of Ce from Ce (IV) to Ce (III) was found in C. elegans, when exposed to the neutral and negatively charged relative to positively charged CeO2-NPs. The addition of humic acid (HA) to the exposure media significantly decreased the toxicity of CeO2-NPs, and the ratio of CeO2-NPs to HA influenced Ce bioaccumulation. When the concentration of HA was higher than the CeO2-NP concentration, Ce bioaccumulation decreased. These results suggest that the nature of the pristine coatings as a determinant of hazard may be greatly reduced once CeO2-NPs enter the environment and are coated with NOM.


Assuntos
Caenorhabditis elegans/metabolismo , Cério/toxicidade , Substâncias Húmicas/análise , Nanopartículas Metálicas/toxicidade , Eletricidade Estática , Animais , Disponibilidade Biológica , Caenorhabditis elegans/efeitos dos fármacos , Ligantes , Espectrometria por Raios X , Testes de Toxicidade
12.
Environ Sci Pollut Res Int ; 20(9): 6482-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23608981

RESUMO

Due to its high growth rate and biomass production, bamboo has recently been proven to be useful in wastewater treatment. Bamboo accumulates high silicon (Si) levels in its tissues, which may improve its development and tolerance to metal toxicity. This study investigates the effect of Si supplementation on bamboo growth and copper (Cu) sensitivity. An 8-month hydroponic culture of bamboo Gigantocloa sp. "Malay Dwarf " was performed. The bamboo plants were first submitted to a range of Si supplementation (0-1.5 mM). After 6 months, a potentially toxic Cu concentration of 1.5 µM Cu(2+) was added. Contrary to many studies on other plants, bamboo growth did not depend on Si levels even though it absorbed Si up to 218 mg g(-1) in leaves. The absorption of Cu by bamboo plants was not altered by the Si supplementation; Cu accumulated mainly in roots (131 mg kg(-1)), but was also found in leaves (16.6 mg kg(-1)) and stems (9.8 mg kg(-1)). Copper addition did not induce any toxicity symptoms. The different Cu and Si absorption mechanisms may partially explain why Si did not influence Cu repartition and concentration in bamboo. Given the high biomass and its absorption capacity, bamboo could potentially tolerate and accumulate high Cu concentrations making this plant useful for wastewater treatment.


Assuntos
Cobre/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Silício/metabolismo , Biodegradação Ambiental , Hidroponia , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Silício/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...