Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(7): 1469-1483, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501754

RESUMO

The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer's disease. Altered metabolism of essential biometals is another feature of Alzheimer's, with amyloid plaques representing sites of disturbed metal homeostasis. Despite these observations, metal-targeting disease treatments have not been therapeutically effective to date. A better understanding of amyloid plaque composition and the role of the metals associated with them is critical. To establish this knowledge, the ability to resolve chemical variations at nanometer length scales relevant to biology is essential. Here, we present a methodology for the label-free, nanoscale chemical characterization of amyloid plaques within human Alzheimer's disease tissue using synchrotron X-ray spectromicroscopy. Our approach exploits a C-H carbon absorption feature, consistent with the presence of lipids, to visualize amyloid plaques selectively against the tissue background, allowing chemical analysis to be performed without the addition of amyloid dyes that alter the native sample chemistry. Using this approach, we show that amyloid plaques contain elevated levels of calcium, carbonates, and iron compared to the surrounding brain tissue. Chemical analysis of iron within plaques revealed the presence of chemically reduced, low-oxidation-state phases, including ferromagnetic metallic iron. The zero-oxidation state of ferromagnetic iron determines its high chemical reactivity and so may contribute to the redox burden in the Alzheimer's brain and thus drive neurodegeneration. Ferromagnetic metallic iron has no established physiological function in the brain and may represent a target for therapies designed to lower redox burdens in Alzheimer's disease. Additionally, ferromagnetic metallic iron has magnetic properties that are distinct from the iron oxide forms predominant in tissue, which might be exploitable for the in vivo detection of amyloid pathologies using magnetically sensitive imaging. We anticipate that this label-free X-ray imaging approach will provide further insights into the chemical composition of amyloid plaques, facilitating better understanding of how plaques influence the course of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Encéfalo/metabolismo , Ferro/metabolismo , Cálcio/metabolismo
2.
J Neurosci Methods ; 382: 109708, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089168

RESUMO

BACKGROUND: Clinical estimates of brain iron concentration are achievable with quantitative transverse relaxation rate R2, via time-consuming multiple spin-echo (SE) sequences. The objective of this study was to investigate whether quantitative iron-sensitive information may be derived from 3.0 T dual-contrast fast-spin-echo (FSE) sequences (typically employed in anatomical non-quantitative evaluations), as a routinely-collected alternative to evaluate iron levels in healthy (HC) and Parkinson's disease (PD) brains. NEW METHOD: MRI 3.0 T FSE data from the Parkinson's Progression Markers Initiative (PPMI) (12 PD, 12 age- and gender-matched HC subjects) were cross-sectionally and longitudinally evaluated. A new measure, 'effective R2', was calculated for bilateral subcortical grey matter (caudate nucleus, putamen, globus pallidus, red nucleus, substantia nigra). Linear regression analysis was performed to correlate 'effective R2' with models of age-dependent brain iron concentration and striatal dopamine transporter (DaT) receptor binding ratio. RESULTS: Effective R2 was strongly correlated with estimated brain iron concentration. In PD, putaminal effective R2 difference was observed between the hemispheres contra-/ipsi-lateral to the predominantly symptomatic side at onset. This hemispheric difference was correlated with the putaminal DaT binding ratios in PD. COMPARISON WITH EXISTING METHOD(S): Effective R2, derived from rapid dual-contrast FSE sequences, showed viability as an alternative to R2 from SE sequences. Linear correlation of effective R2 with estimated iron concentration was comparable to documented iron-dependent R2. The effective R2 correlation coefficient was consistent with theoretical R2 iron-dependence at 3.0 T. CONCLUSIONS: Effective R2 has clinical potential as a fast quantitative method, as an alternative to R2, to aid evaluation of brain iron levels and DaT function.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Substância Negra , Ferro/análise
3.
Biomedicines ; 10(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885018

RESUMO

Reported levels of amyloid-beta and tau in human cerebrospinal fluid (CSF) were evaluated to discover if these biochemical markers can predict the transition from Mild Cognitive Impairment (MCI) to Alzheimer's disease (AD). A systematic review of the literature in PubMed and Web of Science (April 2021) was performed by a single researcher to identify studies reporting immunologically-based (xMAP or ELISA) measures of CSF analytes Aß(1-42) and/or P-tau and/or T-tau in clinical studies with at least two timepoints and a statement of diagnostic criteria. Of 1137 screened publications, 22 met the inclusion criteria for CSF Aß(1-42) measures, 20 studies included T-tau, and 17 included P-tau. Six meta-analyses were conducted to compare the analytes for healthy controls (HC) versus progressive MCI (MCI_AD) and for non-progressive MCI (Stable_MCI) versus MCI_AD; effect sizes were determined using random effects models. The heterogeneity of effect sizes across studies was confirmed with very high significance (p < 0.0001) for all meta-analyses except HC versus MCI_AD T-tau (p < 0.05) and P-tau (non-significant). Standard mean difference (SMD) was highly significant (p < 0.0001) for all comparisons (Stable_MCI versus MCI_AD: SMD [95%-CI] Aß(1-42) = 1.19 [0.96,1.42]; T-tau = −1.03 [−1.24,−0.82]; P-tau = −1.03 [−1.47,−0.59]; HC versus MCI_AD: SMD Aß(1-42) = 1.73 [1.39,2.07]; T-tau = −1.13 [−1.33,−0.93]; P-tau = −1.10 [−1.23,−0.96]). The follow-up interval in longitudinal evaluations was a critical factor in clinical study design, and the Aß(1−42)/P-tau ratio most robustly differentiated progressive from non-progressive MCI. The value of amyloid-beta and tau as markers of patient outcome are supported by these findings.

4.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108207

RESUMO

The chemistry of copper and iron plays a critical role in normal brain function. A variety of enzymes and proteins containing positively charged Cu+, Cu2+, Fe2+, and Fe3+ control key processes, catalyzing oxidative metabolism and neurotransmitter and neuropeptide production. Here, we report the discovery of elemental (zero-oxidation state) metallic Cu0 accompanying ferromagnetic elemental Fe0 in the human brain. These nanoscale biometal deposits were identified within amyloid plaque cores isolated from Alzheimer's disease subjects, using synchrotron x-ray spectromicroscopy. The surfaces of nanodeposits of metallic copper and iron are highly reactive, with distinctly different chemical and magnetic properties from their predominant oxide counterparts. The discovery of metals in their elemental form in the brain raises new questions regarding their generation and their role in neurochemistry, neurobiology, and the etiology of neurodegenerative disease.

5.
Chem Commun (Camb) ; 57(1): 69-72, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33337460

RESUMO

The stable complex [bis(toluene-3,4-dithiolato)copper(iii)][NEt3H] has been synthesised and characterised as a square-planar Cu(iii) complex by X-ray photoelectron spectroscopy, cyclic voltammetry and DFT calculations. Intriguingly, when fragmented in FTICR-MS, an unusual [(toluene-3,4-dithiolate)Cu(iii)(peroxide)]- complex is formed by reaction with oxygen. Natural 1,2-dithiolenes known to bind molybdenum might stabilise Cu(iii) in vivo.

6.
J Neurosci Methods ; 345: 108870, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687851

RESUMO

BACKGROUND: The corpus callosum is the largest white matter tract in the human brain, involved in inter-hemispheric transfer and integration of lateralised visual, sensory-motor, language, and cognitive information. Microstructural alterations are implicated in ageing as well as various neurological conditions. NEW METHOD: Cross-sectional diffusion-weighted images of 107 healthy adults were used to create a linear regression model of the ageing corpus callosum and its sub-regions to evaluate the impact of analysis by sub-region, and to test for deviations from healthy ageing parameters in 28 subjects with mild cognitive impairment (MCI). Alterations in diffusion properties including fractional anisotropy, mean, radial and axial diffusivities were investigated as a function of age. RESULTS: Changes in DTI parameters showed age-dependent regional differences, likely arising from axonal diameter variation across cross-sectional regions of interest in the corpus callosum. Patterns suggestive of degeneration with healthy ageing were observed in all regions. Diffusion parameters in sub-regions projecting to pre-motor, primary, and supplementary motor areas of the brain differed for MCI versus healthy controls, and MCI subjects were more likely than healthy controls to experience a reduction in motor skills. COMPARISON WITH EXISTING METHODS: Statistical analyses of the corpus callosum by five manually-defined sub-regions, instead of a single manually-defined region of interest, revealed region-specific changes in microstructure in healthy ageing and MCI, and accounted for clinically-evaluated differences in motor skills between cohorts. CONCLUSION: This method will support future studies of corpus callosum, enabling identification and measurement of white matter changes that are undetectable with the single ROI approach.


Assuntos
Disfunção Cognitiva , Substância Branca , Adulto , Anisotropia , Disfunção Cognitiva/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Estudos Transversais , Imagem de Tensor de Difusão , Humanos , Substância Branca/diagnóstico por imagem
7.
Sci Rep ; 10(1): 10332, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32587293

RESUMO

Atypical low-oxidation-state iron phases in Alzheimer's disease (AD) pathology are implicated in disease pathogenesis, as they may promote elevated redox activity and convey toxicity. However, the origin of low-oxidation-state iron and the pathways responsible for its formation and evolution remain unresolved. Here we investigate the interaction of the AD peptide ß-amyloid (Aß) with the iron storage protein ferritin, to establish whether interactions between these two species are a potential source of low-oxidation-state iron in AD. Using X-ray spectromicroscopy and electron microscopy we found that the co-aggregation of Aß and ferritin resulted in the conversion of ferritin's inert ferric core into more reactive low-oxidation-states. Such findings strongly implicate Aß in the altered iron handling and increased oxidative stress observed in AD pathogenesis. These amyloid-associated iron phases have biomarker potential to assist with disease diagnosis and staging, and may act as targets for therapies designed to lower oxidative stress in AD tissue.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/ultraestrutura , Biomarcadores/química , Biomarcadores/metabolismo , Ferritinas/química , Ferritinas/ultraestrutura , Humanos , Ferro/química , Microscopia Eletrônica de Transmissão e Varredura , Oxirredução , Estresse Oxidativo , Fragmentos de Peptídeos/ultraestrutura , Agregados Proteicos , Espectrometria por Raios X
8.
J Trace Elem Med Biol ; 62: 126555, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32526631

RESUMO

BACKGROUND: Neuromelanin-pigmented neurons, which are highly susceptible to neurodegeneration in the Parkinson's disease substantia nigra, harbour elevated iron levels in the diseased state. Whilst it is widely believed that neuronal iron is stored in an inert, ferric form, perturbations to normal metal homeostasis could potentially generate more reactive forms of iron capable of stimulating toxicity and cell death. However, non-disruptive analysis of brain metals is inherently challenging, since use of stains or chemical fixatives, for example, can significantly influence metal ion distributions and/or concentrations in tissues. AIMS: The aim of this study was to apply synchrotron soft x-ray spectromicroscopy to the characterisation of iron deposits and their local environment within neuromelanin-containing neurons of Parkinson's disease substantia nigra. METHODS: Soft x-ray spectromicroscopy was applied in the form of Scanning Transmission X-ray Microscopy (STXM) to analyse resin-embedded tissue, without requirement for chemically disruptive processing or staining. Measurements were performed at the oxygen and iron K-edges in order to characterise both organic and inorganic components of anatomical tissue using a single label-free method. RESULTS: STXM revealed evidence for mixed oxidation states of neuronal iron deposits associated with neuromelanin clusters in Parkinson's disease substantia nigra. The excellent sensitivity, specificity and spatial resolution of these STXM measurements showed that the iron oxidation state varies across sub-micron length scales. CONCLUSIONS: The label-free STXM approach is highly suited to characterising the distributions of both inorganic and organic components of anatomical tissue, and provides a proof-of-concept for investigating trace metal speciation within Parkinson's disease neuromelanin-containing neurons.


Assuntos
Encéfalo/metabolismo , Ferro/análise , Doença de Parkinson/metabolismo , Espectrometria por Raios X/métodos , Química Encefálica , Humanos , Ferro/metabolismo , Microscopia Eletrônica de Transmissão e Varredura/métodos , Neurônios/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Síncrotrons
9.
Angew Chem Int Ed Engl ; 59(29): 11984-11991, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227670

RESUMO

A hallmark of Parkinson's disease is the death of neuromelanin-pigmented neurons, but the role of neuromelanin is unclear. The in situ characterization of neuromelanin remains dependent on detectable pigmentation, rather than direct quantification of neuromelanin. We show that direct, label-free nanoscale visualization of neuromelanin and associated metal ions in human brain tissue can be achieved using synchrotron scanning transmission x-ray microscopy (STXM), through a characteristic feature in the neuromelanin x-ray absorption spectrum at 287.4 eV that is also present in iron-free and iron-laden synthetic neuromelanin. This is confirmed in consecutive brain sections by correlating STXM neuromelanin imaging with silver nitrate-stained neuromelanin. Analysis suggests that the 1s-σ* (C-S) transition in benzothiazine groups accounts for this feature. This method illustrates the wider potential of STXM as a label-free spectromicroscopy technique applicable to both organic and inorganic materials.


Assuntos
Encéfalo/diagnóstico por imagem , Melaninas/metabolismo , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/patologia , Humanos , Ferro/química , Metais/química , Microscopia , Doença de Parkinson/diagnóstico , Nitrato de Prata/química , Espectrometria por Raios X , Síncrotrons
10.
Int J Biol Macromol ; 155: 543-550, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240735

RESUMO

The α-synuclein (αSN) amyloid fibrillization process is known to be a crucial phenomenon associated with neuronal loss in various neurodegenerative diseases, most famously Parkinson's disease. The process involves different aggregated species and ultimately leads to formation of ß-sheet rich fibrillar structures. Despite the essential role of αSN aggregation in the pathoetiology of various neurological disorders, the characteristics of various assemblies are not fully understood. Here, we established a fluorescence-based model for studying the end-parts of αSN to decipher the structural aspects of aggregates during the fibrillization. Our model proved highly sensitive to the events at the early stage of the fibrillization process, which are hardly detectable with routine techniques. Combining fluorescent and PAGE analysis, we found different oligomeric aggregates in the nucleation phase of fibrillization with different sensitivity to SDS and different structures based on αSN termini. Moreover, we found that these oligomers are highly dynamic: after reaching peak levels during fibrillization, they decline and eventually disappear, suggesting their transformation into other αSN aggregated species. These findings shed light on the structural features of various αSN aggregates and their dynamics in synucleinopathies.


Assuntos
Amiloide/química , Proteínas Mutantes/química , Mutação , alfa-Sinucleína/química , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
11.
Food Funct ; 11(4): 2938-2942, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32211629

RESUMO

Iron is an essential element, and cornflake-style cereals are typically fortified with iron to a level up to 14 mg iron per 100 g. Even single cornflakes exhibit magnetic behaviour. We extracted iron microparticles from samples of two own-brand supermarket cornflakes using a strong permanent magnet. Synchrotron iron K-edge X-ray absorption near-edge spectroscopic data were consistent with identification as metallic iron, and X-ray diffraction studies provided unequivocal identification of the extracted iron as body-centred cubic (BCC) α-iron. Magnetometry measurements were also consistent with ca. 14 mg per 100 g BCC iron. These findings emphasise that attention must be paid to the speciation of trace elements, in relation to their bioavailability. To mimic conditions in the stomach, we suspended the iron extract in dilute HCl (pH 1.0-2.0) at 310 K (body temperature) and found by ICP-MS that over a period of 5 hours, up to 13% of the iron dissolved. This implies that despite its metallic form in the cornflakes, the iron is potentially bioavailable for oxidation and absorption into the body.


Assuntos
Grão Comestível/química , Ferro/metabolismo , Disponibilidade Biológica , Magnetometria , Oligoelementos/metabolismo , Espectroscopia por Absorção de Raios X , Difração de Raios X
12.
Cells ; 8(10)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658742

RESUMO

Transition metals have essential roles in brain structure and function, and are associated with pathological processes in neurodegenerative disorders classed as proteinopathies. Synchrotron X-ray techniques, coupled with ultrahigh-resolution mass spectrometry, have been applied to study iron and copper interactions with amyloid ß (1-42) or α-synuclein. Ex vivo tissue and in vitro systems were investigated, showing the capability to identify metal oxidation states, probe local chemical environments, and localize metal-peptide binding sites. Synchrotron experiments showed that the chemical reduction of ferric (Fe3+) iron and cupric (Cu2+) copper can occur in vitro after incubating each metal in the presence of Aß for one week, and to a lesser extent for ferric iron incubated with α-syn. Nanoscale chemical speciation mapping of Aß-Fe complexes revealed a spatial heterogeneity in chemical reduction of iron within individual aggregates. Mass spectrometry allowed the determination of the highest-affinity binding region in all four metal-biomolecule complexes. Iron and copper were coordinated by the same N-terminal region of Aß, likely through histidine residues. Fe3+ bound to a C-terminal region of α-syn, rich in aspartic and glutamic acid residues, and Cu2+ to the N-terminal region of α-syn. Elucidating the biochemistry of these metal-biomolecule complexes and identifying drivers of chemical reduction processes for which there is evidence ex-vivo, are critical to the advanced understanding of disease aetiology.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cobre/química , Ferro/química , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Sítios de Ligação , Cobre/metabolismo , Humanos , Ferro/metabolismo , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Doença de Parkinson/metabolismo , Ligação Proteica , Conformação Proteica , Síncrotrons , Sinucleinopatias/metabolismo , Espectroscopia por Absorção de Raios X , alfa-Sinucleína/química
13.
Front Cell Dev Biol ; 7: 142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404236

RESUMO

Biometals such as iron, copper, potassium, and zinc are essential regulatory elements of several biological processes. The homeostasis of biometals is often affected in age-related pathologies. Notably, impaired iron metabolism has been linked to several neurodegenerative disorders. Autophagy, an intracellular degradative process dependent on the lysosomes, is involved in the regulation of ferritin and iron levels. Impaired autophagy has been associated with normal pathological aging, and neurodegeneration. Non-mammalian model organisms such as Drosophila have proven to be appropriate for the investigation of age-related pathologies. Here, we show that ferritin is expressed in adult Drosophila brain and that iron and holoferritin accumulate with aging. At whole-brain level we found no direct relationship between the accumulation of holoferritin and a deficit in autophagy in aged Drosophila brain. However, synchrotron X-ray spectromicroscopy revealed an additional spectral feature in the iron-richest region of autophagy-deficient fly brains, consistent with iron-sulfur. This potentially arises from iron-sulfur clusters associated with altered mitochondrial iron homeostasis.

14.
J Am Soc Mass Spectrom ; 30(10): 2123-2134, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31350722

RESUMO

Native top-down mass spectrometry is a fast, robust biophysical technique that can provide molecular-scale information on the interaction between proteins or peptides and ligands, including metal cations. Here we have analyzed complexes of the full-length amyloid ß (1-42) monomer with a range of (patho)physiologically relevant metal cations using native Fourier transform ion cyclotron resonance mass spectrometry and three different fragmentation methods-collision-induced dissociation, electron capture dissociation, and infrared multiphoton dissociation-all yielding consistent results. Amyloid ß is of particular interest as its oligomerization and aggregation are major events in the etiology of Alzheimer's disease, and it is known that interactions between the peptide and bioavailable metal cations have the potential to significantly damage neurons. Those metals which exhibited the strongest binding to the peptide (Cu2+, Co2+, Ni2+) all shared a very similar binding region containing two of the histidine residues near the N-terminus (His6, His13). Notably, Fe3+ bound to the peptide only when stabilized toward hydrolysis, aggregation, and precipitation by a chelating ligand, binding in the region between Ser8 and Gly25. We also identified two additional binding regions near the flexible, hydrophobic C-terminus, where other metals (Mg2+, Ca2+, Mn2+, Na+, and K+) bound more weakly-one centered on Leu34, and one on Gly38. Unexpectedly, collisional activation of the complex formed between the peptide and [CoIII(NH3)6]3+ induced gas-phase reduction of the metal to CoII, allowing the peptide to fragment via radical-based dissociation pathways. This work demonstrates how native mass spectrometry can provide new insights into the interactions between amyloid ß and metal cations.


Assuntos
Peptídeos beta-Amiloides , Espectrometria de Massas/métodos , Metais , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Metais/química , Metais/metabolismo , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Neurosci Methods ; 319: 28-39, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30851339

RESUMO

BACKGROUND: Chemical imaging of the human brain has great potential for diagnostic and monitoring purposes. The heterogeneity of human brain iron distribution, and alterations to this distribution in Alzheimer's disease, indicate iron as a potential endogenous marker. The influence of iron on certain magnetic resonance imaging (MRI) parameters increases with magnetic field, but is under-explored in human brain tissues above 7 T. NEW METHOD: Magnetic resonance microscopy at 9.4 T is used to calculate parametric images of chemically-unfixed post-mortem tissue from Alzheimer's cases (n = 3) and healthy controls (n = 2). Iron-rich regions including caudate nucleus, putamen, globus pallidus and substantia nigra are analysed prior to imaging of total iron distribution with synchrotron X-ray fluorescence mapping. Iron fluorescence calibration is achieved with adjacent tissue blocks, analysed by inductively coupled plasma mass spectrometry or graphite furnace atomic absorption spectroscopy. RESULTS: Correlated MR images and fluorescence maps indicate linear dependence of R2, R2* and R2' on iron at 9.4 T, for both disease and control, as follows: [R2(s-1) = 0.072[Fe] + 20]; [R2*(s-1) = 0.34[Fe] + 37]; [R2'(s-1) = 0.26[Fe] + 16] for Fe in µg/g tissue (wet weight). COMPARISON WITH EXISTING METHODS: This method permits simultaneous non-destructive imaging of most bioavailable elements. Iron is the focus of the present study as it offers strong scope for clinical evaluation; the approach may be used more widely to evaluate the impact of chemical elements on clinical imaging parameters. CONCLUSION: The results at 9.4 T are in excellent quantitative agreement with predictions from experiments performed at lower magnetic fields.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Gânglios da Base/química , Ferro/análise , Imageamento por Ressonância Magnética/métodos , Imagem Óptica/métodos , Síncrotrons , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagem Óptica/instrumentação
16.
Metallomics ; 10(10): 1401-1414, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30183049

RESUMO

In this study, we measured the levels of elements in human brain microvascular endothelial cells (ECs) infected with T. gondii. ECs were infected with tachyzoites of the RH strain, and at 6, 24, and 48 hours post infection (hpi), the intracellular concentrations of elements were determined using a synchrotron-microfocus X-ray fluorescence microscopy (µ-XRF) system. This method enabled the quantification of the concentrations of Zn and Ca in infected and uninfected (control) ECs at sub-micron spatial resolution. T. gondii-hosting ECs contained less Zn than uninfected cells only at 48 hpi (p < 0.01). The level of Ca was not significantly different between infected and control cells (p > 0.05). Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis revealed infection-specific metallome profiles characterized by significant increases in the intracellular levels of Zn, Fe, Mn and Cu at 48 hpi (p < 0.01), and significant reductions in the extracellular concentrations of Co, Cu, Mo, V, and Ag at 24 hpi (p < 0.05) compared with control cells. Zn constituted the largest part (74%) of the total metal composition (metallome) of the parasite. Gene expression analysis showed infection-specific upregulation in the expression of five genes, MT1JP, MT1M, MT1E, MT1F, and MT1X, belonging to the metallothionein gene family. These results point to a possible correlation between T. gondii infection and increased expression of MT1 isoforms and altered intracellular levels of elements, especially Zn and Fe. Taken together, a combined µ-XRF and ICP-MS approach is promising for studies of the role of elements in mediating host-parasite interaction.


Assuntos
Encéfalo/metabolismo , Endotélio Vascular/metabolismo , Espectrometria de Massas/métodos , Metais/metabolismo , Espectrometria por Raios X/métodos , Toxoplasma/patogenicidade , Toxoplasmose/metabolismo , Encéfalo/citologia , Encéfalo/parasitologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/parasitologia , Perfilação da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Metalotioneína/genética , Metalotioneína/metabolismo , Toxoplasmose/parasitologia
17.
Nanoscale ; 10(19): 9174-9185, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29725687

RESUMO

The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.


Assuntos
Lipossomos/química , Nanopartículas/química , Neurônios/efeitos dos fármacos , Doença de Parkinson/terapia , alfa-Sinucleína/química , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Cálcio/metabolismo , Colesterol/química , Humanos , Células PC12 , Polietilenoglicóis/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
Nanoscale ; 10(25): 11782-11796, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29688240

RESUMO

Altered metabolism of biometals in the brain is a key feature of Alzheimer's disease, and biometal interactions with amyloid-ß are linked to amyloid plaque formation. Iron-rich aggregates, including evidence for the mixed-valence iron oxide magnetite, are associated with amyloid plaques. To test the hypothesis that increased chemical reduction of iron, as observed in vitro in the presence of aggregating amyloid-ß, may occur at sites of amyloid plaque formation in the human brain, the nanoscale distribution and physicochemical states of biometals, particularly iron, were characterised in isolated amyloid plaque cores from human Alzheimer's disease cases using synchrotron X-ray spectromicroscopy. In situ X-ray magnetic circular dichroism revealed the presence of magnetite: a finding supported by ptychographic observation of an iron oxide crystal with the morphology of biogenic magnetite. The exceptional sensitivity and specificity of X-ray spectromicroscopy, combining chemical and magnetic probes, allowed enhanced differentiation of the iron oxides phases present. This facilitated the discovery and speciation of ferrous-rich phases and lower oxidation state phases resembling zero-valent iron as well as magnetite. Sequestered calcium was discovered in two distinct mineral forms suggesting a dynamic process of amyloid plaque calcification in vivo. The range of iron oxidation states present and the direct observation of biogenic magnetite provide unparalleled support for the hypothesis that chemical reduction of iron arises in conjunction with the formation of amyloid plaques. These new findings raise challenging questions about the relative impacts of amyloid-ß aggregation, plaque formation, and disrupted metal homeostasis on the oxidative burden observed in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Compostos de Cálcio/metabolismo , Ferro/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Humanos , Placa Amiloide/fisiopatologia , Síncrotrons , Raios X
19.
Cell Chem Biol ; 24(10): 1205-1215.e3, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28890316

RESUMO

A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aß) fibrils in the brain. Nevertheless, the links between Aß and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aß1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aß. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aß-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Ferro/metabolismo , Placa Amiloide/complicações , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Microscopia Eletrônica de Transmissão , Oxirredução
20.
Rare Dis ; 4(1): e1198458, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500074

RESUMO

We previously demonstrated elevated brain iron levels in myelinated structures and associated cells in a hemochromatosis Hfe (-/-) xTfr2 (mut) mouse model. This was accompanied by altered expression of a group of myelin-related genes, including a suite of genes causatively linked to the rare disease family 'neurodegeneration with brain iron accumulation' (NBIA). Expanded data mining and ontological analyses have now identified additional myelin-related transcriptome changes in response to brain iron loading. Concordance between the mouse transcriptome changes and human myelin-related gene expression networks in normal and NBIA basal ganglia testifies to potential clinical relevance. These analyses implicate, among others, genes linked to various rare central hypomyelinating leukodystrophies and peripheral neuropathies including Pelizaeus-Merzbacher-like disease and Charcot-Marie-Tooth disease as well as genes linked to other rare neurological diseases such as Niemann-Pick disease. The findings may help understand interrelationships of iron and myelin in more common conditions such as hemochromatosis, multiple sclerosis and various psychiatric disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...