Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776958

RESUMO

The ubiquitin-proteasome system mediates the degradation of a wide variety of proteins. Proteasome dysfunction is associated with neurodegenerative diseases and neurodevelopmental disorders in humans. Here we identified mutations in PSMC5, an AAA ATPase subunit of the proteasome 19S regulatory particle, in individuals with neurodevelopmental disorders, which were initially considered as variants of unknown significance. We have now found heterozygotes with the following mutations: P320R (6 individuals), R325W, Q160A, and one nonsense mutation at Q69. We focused on understanding the functional consequence of PSMC5 insufficiency and the P320R mutation in cells and found that both impair proteasome function and activate apoptosis. Interestingly, the P320R mutation impairs proteasome function by weakening the association between the 19S regulatory particle and the 20S core particle. Our study supports that proteasome dysfunction is the pathogenic cause of neurodevelopmental disorders in individuals carrying PSMC5 variants.

2.
Proc Natl Acad Sci U S A ; 121(18): e2313107121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652742

RESUMO

Full understanding of proteostasis and energy utilization in cells will require knowledge of the fraction of cell proteins being degraded with different half-lives and their rates of synthesis. We therefore developed a method to determine such information that combines mathematical analysis of protein degradation kinetics obtained in pulse-chase experiments with Bayesian data fitting using the maximum entropy principle. This approach will enable rapid analyses of whole-cell protein dynamics in different cell types, physiological states, and neurodegenerative disease. Using it, we obtained surprising insights about protein stabilities in cultured cells normally and upon activation of proteolysis by mTOR inhibition and increasing cAMP or cGMP. It revealed that >90% of protein content in dividing mammalian cell lines is long-lived, with half-lives of 24 to 200 h, and therefore comprises much of the proteins in daughter cells. The well-studied short-lived proteins (half-lives < 10 h) together comprise <2% of cell protein mass, but surprisingly account for 10 to 20% of measurable newly synthesized protein mass. Evolution thus appears to have minimized intracellular proteolysis except to rapidly eliminate misfolded and regulatory proteins.


Assuntos
Entropia , Proteólise , Proteoma , Proteoma/metabolismo , Humanos , Animais , Teorema de Bayes , Proteostase , Cinética , AMP Cíclico/metabolismo , Serina-Treonina Quinases TOR/metabolismo , GMP Cíclico/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(9): 4664-4674, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071216

RESUMO

During protein degradation by the ubiquitin-proteasome pathway, latent 26S proteasomes in the cytosol must assume an active form. Proteasomes are activated when ubiquitylated substrates bind to them and interact with the proteasome-bound deubiquitylase Usp14/Ubp6. The resulting increase in the proteasome's degradative activity was recently shown to be mediated by Usp14's ubiquitin-like (Ubl) domain, which, by itself, can trigger proteasome activation. Many other proteins with diverse cellular functions also contain Ubl domains and can associate with 26S proteasomes. We therefore tested if various Ubl-containing proteins that have important roles in protein homeostasis or disease also activate 26S proteasomes. All seven Ubl-containing proteins tested-the shuttling factors Rad23A, Rad23B, and Ddi2; the deubiquitylase Usp7, the ubiquitin ligase Parkin, the cochaperone Bag6, and the protein phosphatase UBLCP1-stimulated peptide hydrolysis two- to fivefold. Rather than enhancing already active proteasomes, Rad23B and its Ubl domain activated previously latent 26S particles. Also, Ubl-containing proteins (if present with an unfolded protein) increased proteasomal adenosine 5'-triphosphate (ATP) hydrolysis, the step which commits substrates to degradation. Surprisingly, some of these proteins also could stimulate peptide hydrolysis even when their Ubl domains were deleted. However, their Ubl domains were required for the increased ATPase activity. Thus, upon binding to proteasomes, Ubl-containing proteins not only deliver substrates (e.g., the shuttling factors) or provide additional enzymatic activities (e.g., Parkin) to proteasomes, but also increase their capacity for proteolysis.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/metabolismo
4.
Mol Cell ; 59(2): 143-5, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186288

RESUMO

Although proteasomes are critical in cell regulation and cancer therapy, little is known about the factors regulating proteasome content or activity. In this issue, Zhang et al. (2015) report that miR-101 suppresses the expression of chaperone POMP and 20S assembly, and certain cancers raise proteasome content by losing miR-101.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Inibidores de Proteassoma/metabolismo , Animais , Feminino , Humanos
6.
Yeast ; 27(11): 965-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20625982

RESUMO

Regulated protein destruction by the proteasome is crucial for the maintenance of normal cellular homeostasis. Much of our understanding of proteasome function stems from the use of drugs that inhibit its activity. Curiously, despite the importance of proteasomal proteolysis, previous studies have found that proliferation of the yeast Saccharomyces cerevisiae is relatively resistant to the effects of proteasome inhibitors such as MG132, even in the presence of mutations that increase inhibitor levels in cells. We reasoned that part of the resistance of S. cerevisiae to proteasome inhibitors stems from the fact that most proteasome inhibitors preferentially target the chymotryptic activity of the proteasome, and that the caspase-like and tryptic sites within the 20S core could compensate for proteasome function under these conditions. To test this hypothesis, we generated a strain of yeast in which the gene encoding the drug efflux pump Pdr5 is deleted, and the tryptic and caspase-like proteasome activities are inactivated by mutation. We find that this strain has dramatically increased sensitivity to the proteasome inhibitor MG132. Under these conditions, treatment of yeast with MG132 blocks progression through the cell cycle, increases the accumulation of polyubiquitylated proteins and decreases the ability to induce transcription of certain genes. These results highlight the contribution of the caspase-like and tryptic activities of the proteasome to its function, and provide a strategy to potently block proteasomal proteolysis in yeast that has practical applications.


Assuntos
Inibidores Enzimáticos/metabolismo , Leupeptinas/metabolismo , Inibidores de Proteassoma , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico , Deleção de Genes , Peptídeo Hidrolases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética
7.
Nature ; 461(7265): E7; discussion E8, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19812621

RESUMO

Growing evidence supports the notion that proteasome-mediated destruction of transcriptional activators can be intimately coupled to their function. Recently, Nalley et al. challenged this view by reporting that the prototypical yeast activator Gal4 does not dynamically associate with chromatin, but rather 'locks in' to stable promoter complexes that are resistant to competition. Here we present evidence that the assay used to reach this conclusion is unsuitable, and that promoter-bound, active Gal4 is indeed susceptible to competition in vivo. Our data challenge the key evidence that Nalley et al. used to reach their conclusion, and indicate that Gal4 functions in vivo within the context of dynamic promoter complexes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Ligação Competitiva/efeitos dos fármacos , Imunoprecipitação da Cromatina , Estradiol/farmacologia , Galactoquinase/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Receptores de Estrogênio/agonistas , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Reprodutibilidade dos Testes , Projetos de Pesquisa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Transativadores/genética
8.
Curr Opin Genet Dev ; 16(2): 197-202, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16503126

RESUMO

A growing body of evidence demonstrates that the components of the proteasome are involved directly and mechanistically in the regulation of gene transcription. Proteolytic activities of the proteasome are important for establishing limits for transcription, for promoting the exchange of transcription factors on chromatin, and possibly for facilitating multiple rounds of transcription initiation. Non-proteolytic activities of the proteasome are important for co-activator recruitment, transcriptional elongation, and histone modification. Here, we discuss different ways in which the proteasome can influence transcription, and argue that its unique combination of biological activities makes it ideally suited to act at multiple stages in the transcription process.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Transcrição Gênica , Animais , Humanos , Modelos Biológicos , Modelos Químicos , Complexo de Endopeptidases do Proteassoma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...