Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(1): e2300219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876300

RESUMO

Chitinases are widely studied enzymes that have already found widespread application. Their continued development and valorisation will be driven by the identification of new and improved variants and/or novel applications bringing benefits to industry and society. We previously identified a novel application for chitinases wherein the Candida albicans cell wall surface chitinase 3 (Cht3) was shown to have potential in vaccine applications as a subunit antigen against fungal infections. In the present study, this enzyme was investigated further, developing production and purification protocols, enriching our understanding of its properties, and advancing its application potential. Cht3 was heterologously expressed in Pichia pastoris and a 4-step purification protocol developed and optimised: this involves activated carbon treatment, hydrophobic interaction chromatography, ammonium sulphate precipitation, and gel filtration chromatography. The recombinant enzyme was shown to be mainly O-glycosylated and to retain the epitopes of the native protein. Functional studies showed it to be highly specific, displaying activity on chitin, chitosan, and chito-oligosaccharides larger than chitotriose only. Furthermore, it was shown to be a stable enzyme, exhibiting activity, and stability over broad pH and temperature ranges. This study represents an important step forward in our understanding of Cht3 and contributes to its development for application.


Assuntos
Quitinases , Quitosana , Candida albicans/genética , Candida albicans/metabolismo , Quitinases/genética , Quitinases/química , Proteínas , Quitina/química , Quitina/metabolismo , Concentração de Íons de Hidrogênio
2.
Biomed Pharmacother ; 166: 115362, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633051

RESUMO

Opportunistic fungi cause lethal systemic infections and impose high medical costs to health systems. The World Health Organization has recognized the importance of fungal infections, including them in its global priority list guiding research, development, and discovery of new therapeutic approaches. Fungal vaccine development has been proposed as one of the treatment and prevention strategies in the last decade. In this study, we present the design of a lipid antigen delivery system based on Dioctadecyldimethylammonium bromide: Monoolein (DODAB: MO) containing recombinant Candida albicans Chitinase 3 (Cht3) for modulation the immune response against fungal infections. Several DODAB:MO liposomes containing Cht3 were prepared and those prepared by the incubation method and containing 5 µg/mL Cht3 were selected due to their favorable size, ζ-potential and stability, suited for antigen delivery applications. The encapsulation of Cht3 in these liposomes resulted in a significant increase in cellular uptake compared to empty liposomes, demonstrating their efficacy in delivering the antigen. Moreover, the liposomes proved to be safe for use in immunization procedures. Subcutaneous administration of Cht3 liposomes elicited a Th1/Th17 immune response profile, associated with the production of high levels of antibodies against Cht3. These antibodies recognized both the native and the recombinant forms of the protein, opsonizing mother-yeast at the cell scars, which has the potential to disrupt cell separation and hinder yeast growth. The findings suggest that the designed lipid antigen delivery system shows promise as a potential candidate for enhancing immune responses against fungal infections, offering a valuable strategy for future fungal vaccine development.


Assuntos
Quitinases , Vacinas Fúngicas , Micoses , Vacinas , Candida albicans , Lipossomos , Anticorpos , Lipídeos
3.
Methods Mol Biol ; 2967: 223-238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608115

RESUMO

Inverse PCR is a powerful tool for the rapid introduction of desired mutations at desired positions in a circular double-stranded DNA sequence. In this technique, custom-designed mutant primers oriented in the inverse direction are used to amplify the entire circular template with incorporation of the required mutation(s). By careful primer design, it can be used to perform such diverse modifications as the introduction of point or multiple mutations, the insertion of new sequences, and even sequence deletions. Three primer formats are commonly used, nonoverlapping, partially overlapping, and fully overlapping primers, and here we describe the use of nonoverlapping primers for introduction of a point mutation. Use of such a primer setup in the PCR, with one of the primers containing the desired mismatch mutation, results in the amplification of a linear, double-stranded, mutated product. Methylated template DNA is removed from the non-methylated PCR product by DpnI digestion, and the PCR product is then phosphorylated by polynucleotide kinase treatment before being recircularized by ligation and transformed to E. coli. This relatively simple site-directed mutagenesis procedure is of major importance in biology and biotechnology where it is commonly employed for the study and engineering of DNA, RNA, and proteins.


Assuntos
Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Mutagênese Sítio-Dirigida/métodos , Reação em Cadeia da Polimerase/métodos , Mutação , Engenharia de Proteínas , Temperatura
4.
Cell Chem Biol ; 30(7): 780-794.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37379846

RESUMO

Overlapping principles of embryonic and tumor biology have been described, with recent multi-omics campaigns uncovering shared molecular profiles between human pluripotent stem cells (hPSCs) and adult tumors. Here, using a chemical genomic approach, we provide biological evidence that early germ layer fate decisions of hPSCs reveal targets of human cancers. Single-cell deconstruction of hPSCs-defined subsets that share transcriptional patterns with transformed adult tissues. Chemical screening using a unique germ layer specification assay for hPSCs identified drugs that enriched for compounds that selectively suppressed the growth of patient-derived tumors corresponding exclusively to their germ layer origin. Transcriptional response of hPSCs to germ layer inducing drugs could be used to identify targets capable of regulating hPSC specification as well as inhibiting adult tumors. Our study demonstrates properties of adult tumors converge with hPSCs drug induced differentiation in a germ layer specific manner, thereby expanding our understanding of cancer stemness and pluripotency.


Assuntos
Neoplasias , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Genômica
5.
Essays Biochem ; 67(4): 701-713, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37021674

RESUMO

Psychrophilic organisms thriving at near-zero temperatures synthesize cold-adapted enzymes to sustain cell metabolism. These enzymes have overcome the reduced molecular kinetic energy and increased viscosity inherent to their environment and maintained high catalytic rates by development of a diverse range of structural solutions. Most commonly, they are characterized by a high flexibility coupled with an intrinsic structural instability and reduced substrate affinity. However, this paradigm for cold-adaptation is not universal as some cold-active enzymes with high stability and/or high substrate affinity and/or even an unaltered flexibility have been reported, pointing to alternative adaptation strategies. Indeed, cold-adaptation can involve any of a number of a diverse range of structural modifications, or combinations of modifications, depending on the enzyme involved, its function, structure, stability, and evolutionary history. This paper presents the challenges, properties, and adaptation strategies of these enzymes.


Assuntos
Adaptação Fisiológica , Temperatura Baixa , Temperatura , Evolução Biológica , Enzimas/metabolismo , Estabilidade Enzimática
6.
Biotechnol Adv ; 65: 108148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030552

RESUMO

Endo-1,4-ß-xylanases (EC 3.2.1.8) are O-glycoside hydrolases that cleave the internal ß-1,4-D-xylosidic linkages of the complex plant polysaccharide xylan. They are produced by a vast array of organisms where they play critical roles in xylan saccharification and plant cell wall hydrolysis. They are also important industrial biocatalysts with widespread application. A large and ever growing number of xylanases with wildly different properties and functionalites are known and a better understanding of these would enable a more effective use in various applications. The Carbohydrate-Active enZYmes database (CAZy), which classifies evolutionarily related proteins into a glycoside hydrolase family-subfamily organisational scheme has proven powerful in understanding these enzymes. Nevertheless, ambiguity currently exists as to the number of glycoside hydrolase families and subfamilies harbouring catalytic domains with true endoxylanase activity and as to the specific characteristics of each of these families/subfamilies. This review seeks to clarify this, identifying 9 glycoside hydrolase families containing enzymes with endo-1,4-ß-xylanase activity and discussing their properties, similarities, differences and biotechnological perspectives. In particular, substrate specificities and hydrolysis patterns and the structural determinants of these are detailed, with taxonomic aspects of source organisms being also presented. Shortcomings in current knowledge and research areas that require further clarification are highlighted and suggestions for future directions provided. This review seeks to motivate further research on these enzymes and especially of the lesser known endo-1,4-ß-xylanase containing families. A better understanding of these enzymes will serve as a foundation for the knowledge-based development of process-fitted endo-1,4-ß-xylanases and will accelerate their development for use with even the most recalcitrant of substrates in the biobased industries of the future.


Assuntos
Endo-1,4-beta-Xilanases , Glicosídeo Hidrolases , Humanos , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Xilanos/química , Especificidade por Substrato , Proteínas de Bactérias/metabolismo
7.
Sci Total Environ ; 826: 154118, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35219673

RESUMO

Today, the world faces an enormous increase in plastic waste pollution caused by the emergence of the COVID-19 pandemic. Plastic pollution has been already one of the greatest threats to our planet before the Coronavirus outbreak. The disposal of millions of personal protective equipment (PPE) in the form of face masks has significantly contributed to the generation of plastic waste and has exacerbated plastic pollution. In an attempt to mitigate pollution caused by the excess PPE waste, an innovative way was developed in this research to reduce pandemic-generated wastes by using the shredded face mask (SFM) fibers as an additive to hot mix asphalt (HMA) to enhance rutting resistance. Rutting or permanent deformation is one of the major distresses of asphalt pavement. Since the SFM behaves as a semi-liquid between 115.5 and 160 °C, which is in the range of HMA mixing and paving temperature, it can function as a binding agent to glue the aggregates. When the pavement is cooled down to ambient temperature, the hardened SFM can provide stability and stiffness to HMA. Based on the results of this study, the modified mixes exhibited excellent resistance to permanent deformation under the Asphalt Pavement Analyzer (APA), as rutting depth values were reduced from 3.0 mm to 0.93 mm by increasing the SFM content from 0% to 1.5%. From the rutting test results and premature distress mechanism study, the appropriate addition of SFM modifiers could improve the high-temperature properties of HMA that can be used to strengthen high-compression and shearing zones in the pavement structure.


Assuntos
COVID-19 , Máscaras , COVID-19/prevenção & controle , Humanos , Hidrocarbonetos , Pandemias/prevenção & controle , Plásticos
8.
Cell Chem Biol ; 28(10): 1394-1406.e10, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33979648

RESUMO

Natural products (NPs) encompass a rich source of bioactive chemical entities. Here, we used human cancer stem cells (CSCs) in a chemical genomics campaign with NP chemical space to interrogate extracts from diverse strains of actinomycete for anti-cancer properties. We identified a compound (McM25044) capable of selectively inhibiting human CSC function versus normal stem cell counterparts. Biochemical and molecular studies revealed that McM025044 exerts inhibition on human CSCs through the small ubiquitin-like modifier (SUMO) cascade, found to be hyperactive in a variety of human cancers. McM025044 impedes the SUMOylation pathway via direct targeting of the SAE1/2 complex. Treatment of patient-derived CSCs resulted in reduced levels of SUMOylated proteins and suppression of progenitor and stem cell capacity measured in vitro and in vivo. Our study overcomes a barrier in chemically inhibiting oncogenic SUMOylation activity and uncovers a unique role for SAE2 in the biology of human cancers.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Autorrenovação Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/citologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sumoilação/efeitos dos fármacos , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-33468460

RESUMO

There is an increasing need for novel drugs and new strategies for the therapy of invasive candidiasis. This study aimed to develop and characterize liposome-based nanoparticles of carvacrol, cinnamaldehyde, citral, and thymol with anti-Candida activities. Dioctadecyldimethylammonium bromide- and monoolein-based liposomes in a 1:2 molar ratio were prepared using a lipid-film hydration method. Liposomes were assembled with equal volumes of liposomal stock dispersion and stock solutions of carvacrol, cinnamaldehyde, citral, or thymol in dimethyl sulfoxide. Cytotoxicity was tested on RAW 264.7 macrophages. In vitro antifungal activity of liposomes with phytocompounds was evaluated according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology using clinical isolates of Candida albicans, Candida auris, Candida dubliniensis, and Candida tropicalis Finally, the ability of macrophage cells to kill Candida isolates after addition of phytocompounds and their nanoparticles was determined. Nanoparticles with 64 µg/ml of cinnamaldehyde, 256 µg/ml of citral, and 128 µg/ml of thymol had the best characteristics among the formulations tested. The highest encapsulation efficiencies were achieved with citral (78% to 83%) and carvacrol (66% to 71%) liposomes. Carvacrol and thymol in liposome-based nanoparticles were nontoxic regardless of the concentration. Moreover, carvacrol and thymol maintained their antifungal activity after encapsulation, and there was a significant reduction (∼41%) of yeast survival when macrophages were incubated with carvacrol or thymol liposomes. In conclusion, carvacrol and thymol liposomes possess high stability, low cytotoxicity, and antifungal activity that act synergistically with macrophages.


Assuntos
Candida , Timol , Acroleína/análogos & derivados , Monoterpenos Acíclicos , Antifúngicos/farmacologia , Cimenos , Glicerídeos , Lipossomos , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Timol/farmacologia
11.
Stem Cells Transl Med ; 8(11): 1180-1191, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31347791

RESUMO

Chemotherapy-induced peripheral neuropathy (PN) is a disorder damaging the peripheral nervous system (PNS) and represents one of the most common side effects of chemotherapy, negatively impacting the quality of life of patients to the extent of withdrawing life-saving chemotherapy dose or duration. Unfortunately, the pathophysiological effects of PN are poorly understood, in part due to the lack of availability of large numbers of human sensory neurons (SNs) for study. Previous reports have demonstrated that human SNs can be directly converted from primitive CD34+ hematopoietic cells, but was limited to a small-scale product of SNs and derived exclusively from less abundant allogenic sources of cord or drug mobilized peripheral blood (PB). To address this shortcoming, we have developed and report detailed procedures toward the generation of human SN directly converted from conventionally drawn PB of adults that can be used in a high-content screening platform for discovery-based studies of chemotherapy agents on neuronal biology. In the absence of mobilization drugs, cryogenically preserved adult human PB could be induced to (i)SN via development through expandable neural precursor differentiation. iSNs could be transferable to high-throughput procedures suitable for high-content screening applicable to neuropathy for example, alterations in neurite morphology in response to chemotherapeutics. Our study provides the first reported platform using adult PB-derived iSNs to study peripheral nervous system-related neuropathies as well as target and drug screening potential for the ability to prevent, block, or repair chemotherapy-induced PN damage. Stem Cells Translational Medicine 2019;8:1180-1191.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/citologia , Células-Tronco Neurais/citologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Células Receptoras Sensoriais/citologia , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/efeitos dos fármacos
12.
Cell ; 177(4): 910-924.e22, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982595

RESUMO

The assembly of organized colonies is the earliest manifestation in the derivation or induction of pluripotency in vitro. However, the necessity and origin of this assemblance is unknown. Here, we identify human pluripotent founder cells (hPFCs) that initiate, as well as preserve and establish, pluripotent stem cell (PSC) cultures. PFCs are marked by N-cadherin expression (NCAD+) and reside exclusively at the colony boundary of primate PSCs. As demonstrated by functional analysis, hPFCs harbor the clonogenic capacity of PSC cultures and emerge prior to commitment events or phenotypes associated with pluripotent reprogramming. Comparative single-cell analysis with pre- and post-implantation primate embryos revealed hPFCs share hallmark properties with primitive endoderm (PrE) and can be regulated by non-canonical Wnt signaling. Uniquely informed by primate embryo organization in vivo, our study defines a subset of founder cells critical to the establishment pluripotent state.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Linhagem da Célula , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Endoderma/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Análise de Célula Única , Via de Sinalização Wnt
13.
Appl Microbiol Biotechnol ; 103(6): 2537-2549, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30719551

RESUMO

Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.


Assuntos
Biodiversidade , Camada de Gelo/microbiologia , Microbiota , Pergelissolo/microbiologia , Biota , Mudança Climática , Temperatura Baixa
14.
Appl Microbiol Biotechnol ; 103(7): 2857-2871, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729286

RESUMO

Cold-adapted microorganisms inhabiting permanently low-temperature environments were initially just a biological curiosity but have emerged as rich sources of numerous valuable tools for application in a broad spectrum of innovative technologies. To overcome the multiple challenges inherent to life in their cold habitats, these microorganisms have developed a diverse array of highly sophisticated synergistic adaptations at all levels within their cells: from cell envelope and enzyme adaptation, to cryoprotectant and chaperone production, and novel metabolic capabilities. Basic research has provided valuable insights into how these microorganisms can thrive in their challenging habitat conditions and into the mechanisms of action of the various adaptive features employed, and such insights have served as a foundation for the knowledge-based development of numerous novel biotechnological tools. In this review, we describe the current knowledge of the adaptation strategies of cold-adapted microorganisms and the biotechnological perspectives and commercial tools emerging from this knowledge. Adaptive features and, where possible, applications, in relation to membrane fatty acids, membrane pigments, the cell wall peptidoglycan layer, the lipopolysaccharide component of the outer cell membrane, compatible solutes, antifreeze and ice-nucleating proteins, extracellular polymeric substances, biosurfactants, chaperones, storage materials such as polyhydroxyalkanoates and cyanophycins and metabolic adjustments are presented and discussed.


Assuntos
Adaptação Fisiológica , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biotecnologia , Temperatura Baixa , Ecossistema , Indústria Alimentícia , Tensoativos
15.
Biotechnol Biofuels ; 11: 251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237826

RESUMO

BACKGROUND: Applying very high gravity (VHG) fermentation conditions to the sugarcane juice (SCJ) bioethanol industry would improve its environmental and economic sustainability without the need for major infrastructure changes or investments. It could enable a decrease in the consumption of biological and natural resources (cane/land, water and energy) while maintaining acceptable production parameters. The present study attempts to demonstrate and characterise an effective industrially relevant SCJ-VHG fermentation process. RESULTS: An industry-like SCJ-VHG bioethanol production process with 30 and 35 °Bx broth was employed to investigate the effects of both the yeast strain used and nitrogen source supplementation on process yield, process productivity, biomass viability, glycerol concentration and retention-associated gene expression. Process performance was shown to be variably affected by the different process conditions investigated. Highest process efficiency, with a 17% (w/v) ethanol yield and only 0.2% (w/v) sugar remaining unfermented, was observed with the Saccharomyces cerevisiae industrial strain CAT-1 in 30 °Bx broth with urea supplementation. In addition, efficient retention of glycerol by the yeast strain was identified as a requisite for better fermentation and was consistent with a higher expression of glycerol permease STL1 and channel FPS1. Urea was shown to promote the deregulation of STL1 expression, overcoming glucose repression. The consistency between Fps1-mediated ethanol secretion and ethanol in the extracellular media reinforces previous suggestions that ethanol might exit the cell through the Fps1 channel. CONCLUSIONS: This work brings solid evidence in favour of the utilisation of VHG conditions in SCJ fermentations, bringing it a step closer to industrial application. SCJ concentrated up to 30 °Bx maintains industrially relevant ethanol production yield and productivity, provided the broth is supplemented with a suitable nitrogen source and an appropriate industrial bioethanol-producing yeast strain is used. In addition, the work contributes to a better understanding of the VHG-SCJ process and the variable effects of process parameters on process efficiency and yeast strain response.

16.
FEMS Yeast Res ; 18(8)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219865

RESUMO

Lignocellulosic hydrolysates remain one of the most abundantly used substrates for the sustainable production of second generation fuels and chemicals with Saccharomyces cerevisiae. Nevertheless, fermentation inhibitors such as acetic acid, furfural and hydroxymethylfurfural are formed during the process and can lead to slow or stuck fermentations and/or act as genotoxic agents leading to production strain genetic instability. We have developed a novel dominant deletion (DEL) cassette assay for quantification of DNA damage in both wild-type and industrial yeast strains. Using this assay, the ethanol production strain S. cerevisiae PE-2 was shown to be more resistant to hydrogen peroxide and furfural than the laboratory DEL strain RS112. Indeed, the PE-2 strain also showed a lower tendency for recombination, consistent with a more efficient DNA protection. The dominant DEL assay presented herein should prove to be a useful tool in the selection of robust yeast strains and process conditions for second generation feedstock fermentations.


Assuntos
Dano ao DNA , Etanol/metabolismo , Genética Microbiana/métodos , Microbiologia Industrial/métodos , Mutagênicos/toxicidade , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Acético/toxicidade , Fermentação , Furaldeído/análogos & derivados , Furaldeído/toxicidade , Lignina/metabolismo
17.
Blood Adv ; 2(15): 1935-1945, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30093531

RESUMO

We completed a phase 1 dose-escalation trial to evaluate the safety of a dopamine receptor D2 (DRD2) antagonist thioridazine (TDZ), in combination with cytarabine. Thirteen patients 55 years and older with relapsed or refractory acute myeloid leukemia (AML) were enrolled. Oral TDZ was administered at 3 dose levels: 25 mg (n = 6), 50 mg (n = 4), or 100 mg (n = 3) every 6 hours for 21 days. Intermediate-dose cytarabine was administered on days 6 to 10. Dose-limiting toxicities (DLTs) included grade 3 QTc interval prolongation in 1 patient at 25 mg TDZ and neurological events in 2 patients at 100 mg TDZ (gait disturbance, depressed consciousness, and dizziness). At the 50-mg TDZ dose, the sum of circulating DRD2 antagonist levels approached a concentration of 10 µM, a level noted to be selectively active against human AML in vitro. Eleven of 13 patients completed a 5-day lead-in with TDZ, of which 6 received TDZ with hydroxyurea and 5 received TDZ alone. During this period, 8 patients demonstrated a 19% to 55% reduction in blast levels, whereas 3 patients displayed progressive disease. The extent of blast reduction during this 5-day interval was associated with the expression of the putative TDZ target receptor DRD2 on leukemic cells. These preliminary results suggest that DRD2 represents a potential therapeutic target for AML disease. Future studies are required to corroborate these observations, including the use of modified DRD2 antagonists with improved tolerability in AML patients. This trial was registered at www.clinicaltrials.gov as #NCT02096289.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Citarabina/administração & dosagem , Citarabina/efeitos adversos , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Antagonistas dos Receptores de Dopamina D2/efeitos adversos , Feminino , Humanos , Hidroxiureia/administração & dosagem , Hidroxiureia/efeitos adversos , Leucemia Mieloide Aguda/patologia , Masculino , Pessoa de Meia-Idade , Tioridazina/administração & dosagem , Tioridazina/efeitos adversos
18.
Stem Cell Reports ; 10(5): 1625-1641, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742393

RESUMO

Human pluripotent stem cells (hPSCs) generate hematopoietic progenitor cells (HPCs) but fail to engraft xenograft models used to detect adult/somatic hematopoietic stem cells (HSCs) from donors. Recent progress to derive hPSC-derived HSCs has relied on cell-autonomous forced expression of transcription factors; however, the relationship of bone marrow to transplanted cells remains unknown. Here, we quantified a failure of hPSC-HPCs to survive even 24 hr post transplantation. Across several hPSC-HPC differentiation methodologies, we identified the lack of CXCR4 expression and function. Ectopic CXCR4 conferred CXCL12 ligand-dependent signaling of hPSC-HPCs in biochemical assays and increased migration/chemotaxis, hematopoietic progenitor capacity, and survival and proliferation following in vivo transplantation. This was accompanied by a transcriptional shift of hPSC-HPCs toward somatic/adult sources, but this approach failed to produce long-term HSC xenograft reconstitution. Our results reveal that networks involving CXCR4 should be targeted to generate putative HSCs with in vivo function from hPSCs.


Assuntos
Quimiocina CXCL12/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Animais , Células da Medula Óssea/metabolismo , Humanos , Cinética , Camundongos
19.
Nat Cell Biol ; 19(11): 1336-1347, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29035359

RESUMO

Acute myeloid leukaemia (AML) is distinguished by the generation of dysfunctional leukaemic blasts, and patients characteristically suffer from fatal infections and anaemia due to insufficient normal myelo-erythropoiesis. Direct physical crowding of bone marrow (BM) by accumulating leukaemic cells does not fully account for this haematopoietic failure. Here, analyses from AML patients were applied to both in vitro co-culture platforms and in vivo xenograft modelling, revealing that human AML disease specifically disrupts the adipocytic niche in BM. Leukaemic suppression of BM adipocytes led to imbalanced regulation of endogenous haematopoietic stem and progenitor cells, resulting in impaired myelo-erythroid maturation. In vivo administration of PPARγ agonists induced BM adipogenesis, which rescued healthy haematopoietic maturation while repressing leukaemic growth. Our study identifies a previously unappreciated axis between BM adipogenesis and normal myelo-erythroid maturation that is therapeutically accessible to improve symptoms of BM failure in AML via non-cell autonomous targeting of the niche.


Assuntos
Adipócitos/patologia , Medula Óssea/patologia , Eritropoese/fisiologia , Leucemia Mieloide Aguda/patologia , Adipogenia/fisiologia , Adulto , Idoso , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Técnicas de Cocultura/métodos , Feminino , Células-Tronco Hematopoéticas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , PPAR gama/metabolismo , Células-Tronco/patologia , Adulto Jovem
20.
Cell Chem Biol ; 24(7): 833-844.e9, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28648376

RESUMO

Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/ß-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/ß-catenin signaling within CSCs. Disruption of CBP-ß-catenin interaction via ICG-001/CWP induces the formation of a Sam68-CBP complex in CSCs that alters Wnt signaling toward apoptosis and differentiation induction. Our study identifies Sam68 as a regulator of human CSC vulnerability.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sialoglicoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Animais , Apoptose/efeitos dos fármacos , Compostos Azabicíclicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/transplante , Organofosfatos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinonas/farmacologia , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Sialoglicoproteínas/antagonistas & inibidores , Sialoglicoproteínas/genética , Sumoilação/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...