Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 4(1): 33, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36697596

RESUMO

Bis(2-chloroethyl) sulfide or sulfur mustard (HD) is one of the highest-tonnage chemical warfare agents and one that is highly persistent in the environment. For decontamination, selective oxidation of HD to the substantially less toxic sulfoxide is crucial. We report here a solvent-free, solid, robust catalyst comprising hydrophobic salts of tribromide and nitrate, copper(II) nitrate hydrate, and a solid acid (NafionTM) for selective sulfoxidation using only ambient air at room temperature. This system rapidly removes HD as a neat liquid or a vapor. The mechanisms of these aerobic decontamination reactions are complex, and studies confirm reversible formation of a key intermediate, the bromosulfonium ion, and the role of Cu(II). The latter increases the rate four-fold by increasing the equilibrium concentration of bromosulfonium during turnover. Cu(II) also provides a colorimetric detection capability. Without HD, the solid is green, and with HD, it is brown. Bromine K-edge XANES and EXAFS studies confirm regeneration of tribromide under catalytic conditions. Diffuse reflectance infrared Fourier transform spectroscopy shows absorption of HD vapor and selective conversion to the desired sulfoxide, HDO, at the gas-solid interface.

2.
ACS Appl Mater Interfaces ; 12(13): 14641-14661, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31994872

RESUMO

The threat of chemical warfare agents (CWAs), assured by their ease of synthesis and effectiveness as a terrorizing weapon, will persist long after the once-tremendous stockpiles in the U.S. and elsewhere are finally destroyed. As such, soldier and civilian protection, battlefield decontamination, and environmental remediation from CWAs remain top national security priorities. New chemical approaches for the fast and complete destruction of CWAs have been an active field of research for many decades, and new technologies have generated immense interest. In particular, our research team and others have shown metal-organic frameworks (MOFs) and polyoxometalates (POMs) to be active for sequestering CWAs and even catalyzing the rapid hydrolysis of agents. In this Forum Article, we highlight recent advancements made in the understanding and evaluation of POMs and Zr-based MOFs as CWA decontamination materials. Specifically, our aim is to bridge the gap between controlled, solution-phase laboratory studies and real-world or battlefield-like conditions by examining agent-material interactions at the gas-solid interface utilizing a multimodal experimental and computational approach. Herein, we report our progress in addressing the following research goals: (1) elucidating molecular-level mechanisms of the adsorption, diffusion, and reaction of CWA and CWA simulants within a series of Zr-based MOFs, such as UiO-66, MOF-808, and NU-1000, and POMs, including Cs8Nb6O19 and (Et2NH2)8[(α-PW11O39Zr(µ-OH)(H2O))2]·7H2O, (2) probing the effects that common ambient gases, such as CO2, SO2, and NO2, have on the efficacy of the MOF and POM materials for CWA destruction, and (3) using CWA simulant results to develop hypotheses for live agent chemistry. Key hypotheses are then tested with targeted live agent studies. Overall, our collaborative effort has provided insight into the fundamental aspects of agent-material interactions and revealed strategies for new catalyst development.

3.
ACS Appl Mater Interfaces ; 12(13): 14721-14738, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31815428

RESUMO

This Review summarizes the recent progress made in the field of chemical threat reduction by utilizing new in situ analytical techniques and combinations thereof to study multifunctional materials designed for capture and decomposition of nerve gases and their simulants. The emphasis is on the use of in situ experiments that simulate realistic operating conditions (solid-gas interface, ambient pressures and temperatures, time-resolved measurements) and advanced synchrotron methods, such as in situ X-ray absorption and scattering methods, a combination thereof with other complementary measurements (e.g., XPS, Raman, DRIFTS, NMR), and theoretical modeling. The examples presented in this Review range from studies of the adsorption and decomposition of nerve agents and their simulants on Zr-based metal organic frameworks to Nb and Zr-based polyoxometalates and metal (hydro)oxide materials. The approaches employed in these studies ultimately demonstrate how advanced synchrotron-based in situ X-ray absorption spectroscopy and diffraction can be exploited to develop an atomic- level understanding of interfacial binding and reaction of chemical warfare agents, which impacts the development of novel filtration media and other protective materials.

4.
J Phys Chem Lett ; 10(9): 2295-2299, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31002759

RESUMO

Development of technologies for protection against chemical warfare agents (CWAs) is critically important. Recently, polyoxometalates have attracted attention as potential catalysts for nerve-agent decomposition. Improvement of their effectiveness in real operating conditions requires an atomic-level understanding of CWA decomposition at the gas-solid interface. We investigated decomposition of the nerve agent Sarin and its simulant, dimethyl chlorophosphate (DMCP), by zirconium polytungstate. Using a multimodal approach, we showed that upon DMCP and Sarin exposure the dimeric tungstate undergoes monomerization, making coordinatively unsaturated Zr(IV) centers available, which activate nucleophilic hydrolysis. Further, DMCP is shown to be a good model system of reduced toxicity for studies of CWA deactivation at the gas-solid interface.

5.
Front Chem ; 6: 365, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186830

RESUMO

Polyoxometalate (POM)-based materials of current interest are summarized, and specific types of POM-containing systems are described in which material facilitates multiple complex interactions or catalytic processes. We specifically highlight POM-containing multi-hydrogen-bonding polymers that form gels upon exposure to select organic liquids and simultaneously catalyze hydrolytic or oxidative decontamination, as well as water oxidation catalysts (WOCs) that can be interfaced with light-absorbing photoelectrode materials for photoelectrocatalytic water splitting.

6.
Chem Sci ; 9(8): 2147-2158, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29719688

RESUMO

The impact of ambient gas molecules (X), NO2, CO2 and SO2 on the structure, stability and decontamination activity of Cs8Nb6O19 polyoxometalate was studied computationally and experimentally. It was found that Cs8Nb6O19 absorbs these molecules more strongly than it adsorbs water and Sarin (GB) and that these interactions hinder nerve agent decontamination. The impacts of diamagnetic CO2 and SO2 molecules on polyoxoniobate Cs8Nb6O19 were fundamentally different from that of NO2 radical. At ambient temperatures, weak coordination of the first NO2 radical to Cs8Nb6O19 conferred partial radical character on the polyoxoniobate and promoted stronger coordination of the second NO2 adsorbent to form a stable diamagnetic Cs8Nb6O19/(NO2)2 species. Moreover, at low temperatures, NO2 radicals formed stable dinitrogen tetraoxide (N2O4) that weakly interacted with Cs8Nb6O19. It was found that both in the absence and presence of ambient gas molecules, GB decontamination by the Cs8Nb6O19 species proceeds via general base hydrolysis involving: (a) the adsorption of water and the nerve agent on Cs8Nb6O19/(X), (b) concerted hydrolysis of a water molecule on a basic oxygen atom of the polyoxoniobate and nucleophilic addition of the nascent OH group to the phosphorus center of Sarin, and (c) rapid reorganization of the formed pentacoordinated-phosphorus intermediate, followed by dissociation of either HF or isopropanol and formation of POM-bound isopropyl methyl phosphonic acid (i-MPA) or methyl phosphonofluoridic acid (MPFA), respectively. The presence of the ambient gas molecules increases the energy of the intermediate stationary points relative to the asymptote of the reactants and slightly increases the hydrolysis barrier. These changes closely correlate with the Cs8Nb6O19-X complexation energy. The most energetically stable intermediates of the GB hydrolysis and decontamination reaction were found to be Cs8Nb6O19/X-MPFA-(i-POH) and Cs8Nb6O19/X-(i-MPA)-HF both in the absence and presence of ambient gas molecules. The high stability of these intermediates is due to, in part, the strong hydrogen bonding between the adsorbates and the protonated [Cs8Nb6O19/X/H]+-core. Desorption of HF or/and (i-POH) and regeneration of the catalyst required deprotonation of the [Cs8Nb6O19/X/H]+-core and protonation of the phosphonic acids i-MPA and MPFA. This catalyst regeneration is shown to be a highly endothermic process, which is the rate-limiting step of the GB hydrolysis and decontamination reaction both in the absence and presence of ambient gas molecules.

7.
Chem Commun (Camb) ; 53(83): 11480-11483, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28984881

RESUMO

We report the synthesis and characterization of a new class of organic/inorganic hybrid polymers composed of covalently-bound 1,3,5-benzenetricarboxamide linkers and anionic polyoxovanadate clusters with varying counter-cations. These materials form gels within seconds upon contact with polar aprotic organic liquids and catalyze the degradation of odorants and toxic molecules under mild conditions including aerobic oxidation of thiols, hydrogen peroxide-catalyzed oxidation of sulfides, and hydrolysis of organophosphate chemical warfare agent analogues.

8.
ACS Appl Mater Interfaces ; 9(40): 35048-35056, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28929745

RESUMO

Fast and earth-abundant-element polyoxometalates (POMs) have been heavily studied recently as water oxidation catalysts (WOCs) in homogeneous solution. However, POM WOCs can be quite unstable when supported on electrode or photoelectrode surfaces under applied potential. This article reports for the first time that a nanoscale oxide coating (Al2O3) applied by the atomic layer deposition (ALD) aids immobilization and greatly stabilizes this now large family of molecular WOCs when on electrode surfaces. In this study, [{RuIV4(OH)2(H2O)4}(γ-SiW10O34)2]10- (Ru4Si2) is supported on hematite photoelectrodes and then protected by ALD Al2O3; this ternary system was characterized before and after photoelectrocatalytic water oxidation by Fourier transform infrared, X-ray photoelectron spectroscopy, energy-dispersive X-ray, and voltammetry. All these studies indicate that Ru4Si2 remains intact with Al2O3 ALD protection, but not without. The thickness of the Al2O3 layer significantly affects the catalytic performance of the system: a 4 nm thick Al2O3 layer provides optimal performance with nearly 100% faradaic efficiency for oxygen generation under visible-light illumination. Al2O3 layers thicker than 6.5 nm appear to completely bury the Ru4Si2 catalyst, removing all of the catalytic activity, whereas thinner layers are insufficient to maintain a long-term attachment of the catalytic POM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...