Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 55: 67-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23665188

RESUMO

Agaricus bisporus is susceptible to a number of diseases, particularly those caused by fungi, with Lecanicillium fungicola being the most serious. Control of this disease is important for the security of crop production, however given the lack of knowledge about fungal-fungal interactions, such disease control is rather limited. Exploiting the recently released genome sequence of A. bisporus, here we report studies simultaneously investigating both the host and the pathogen, focussing on transcriptional changes associated with the cap spotting lesions typically seen in this interaction. Forward-suppressive subtractive hybridisation (SSH) analysis identified 68 A. bisporus unigenes induced during infection. Chitin deacetylase showed the strongest response, with almost 1000-fold up-regulation during infection, so was targeted for down-regulation by silencing to see if it was involved in defence against L. fungicola. Transgenic lines were made expressing hairpin RNAi constructs, however no changes in susceptibility to L. fungicola were observed. Amongst the other up-regulated genes there were none with readily apparent roles in resisting infection in this susceptible interaction. Reverse-SSH identified 72 unigenes from A. bisporus showing reduced expression, including two tyrosinases, several genes involved in nitrogen metabolism and a hydrophobin. The forward-SSH analysis of infected mushrooms also yielded 64 unigenes which were not of A. bisporus origin and thus derived from L. fungicola. An EST analysis of infection-mimicking conditions generated an additional 623 unigenes from L. fungicola including several oxidoreductases, cell wall degrading enzymes, ABC and MFS transporter proteins and various other genes believed to play roles in other pathosystems. Together, this analysis shows how both the pathogen and the host modify their gene expression during an infection-interaction, shedding some light on the disease process, although we note that some 40% of unigenes from both organisms encode hypothetical proteins with no ascribed function which highlights how much there is still to discover about this interaction.


Assuntos
Agaricus/fisiologia , Hypocreales/fisiologia , Interações Microbianas , Transcriptoma , Agaricus/genética , Proteínas Fúngicas/genética , Hypocreales/genética , Hibridização de Ácido Nucleico
2.
Methods Mol Biol ; 722: 179-89, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21590421

RESUMO

The model filamentous fungus Neurospora crassa has been the focus of functional genomics studies for the past several years. A high-throughput gene knockout procedure has been developed and used to generate mutants for more than two-thirds of the ∼10,000 annotated N. crassa genes. Yeast recombinational cloning was incorporated as an efficient procedure to produce all knockout cassettes. N. crassa strains with the Δmus-51 or Δmus-52 deletion mutations were used as transformation recipients in order to reduce the incidence of ectopic integration and increase homologous recombination of knockout cassettes into the genome. A 96-well format was used for many steps of the procedure, including fungal transformation, isolation of homokaryons, and verification of mutants. In addition, development of software programs for primer design and restriction enzyme selection facilitated the high-throughput aspects of the overall protocol.


Assuntos
Clonagem Molecular/métodos , Proteínas Fúngicas/genética , Deleção de Genes , Neurospora crassa/genética , Recombinação Genética , Southern Blotting , Eletroporação , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genoma Fúngico , Genômica/métodos , Transformação Genética
3.
Methods Mol Biol ; 638: 33-40, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238259

RESUMO

The availability of complete genome sequences for a number of biologically important fungi has become an important resource for fungal research communities. However, the functions of many open reading frames (ORFs) identified through annotation of whole genome sequences have yet to be determined. The disruption of ORFs is a practical method for loss-of-function gene analyses in fungi that are amenable to transformation. Unfortunately, the construction of knockout cassettes using traditional digestion and ligation techniques can be difficult to implement in a high-throughput fashion. Knockout cassettes for all annotated ORFs in Neurospora crassa were constructed using yeast recombinational cloning. Here, we describe a high-throughput knockout cassette construction method that can be used with any fungal transformation system.


Assuntos
DNA Fúngico/genética , Eletroporação/métodos , Deleção de Genes , Genoma Fúngico , Neurospora crassa/genética , Fases de Leitura Aberta/genética , Transformação Genética
4.
Microbiology (Reading) ; 156(Pt 5): 1439-1447, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20110303

RESUMO

In plant-pathogenic fungi, the pmk1 mitogen-activated protein kinase (MAPK) signalling pathway plays an essential role in regulating the development of penetration structures and the sensing of host-derived cues, but its role in other pathosystems such as fungal-fungal interactions is less clear. We report the use of a gene disruption strategy to investigate the pmk1-like MAPK, Lf pmk1 in the development of Lecanicillium fungicola (formerly Verticillium fungicola) infection on the cultivated mushroom Agaricus bisporus. Lf pmk1 was isolated using a degenerate PCR-based approach and was shown to be present in a single copy by Southern blot analysis. Quantitative RT-PCR showed the transcript to be fivefold upregulated in cap lesions compared with pure culture. Agrobacterium-mediated targeted disruption was used to delete a central portion of the Lf pmk1 gene. The resulting mutants showed normal symptom development as assessed by A. bisporus mushroom cap assays, sporulation patterns were normal and there were no apparent changes in overall growth rates. Our results indicate that, unlike the situation in fungal-plant pathogens, the pmk1-like MAPK pathway is not required for virulence in the fungal-fungal interaction between the L. fungicola pathogen and A. bisporus host. This observation may be of wider significance in other fungal-fungal and/or fungal-invertebrate interactions.


Assuntos
Agaricus/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Verticillium/enzimologia , Verticillium/patogenicidade , Southern Blotting , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genes Fúngicos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/isolamento & purificação , Fenótipo , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética , Verticillium/genética , Virulência
5.
J Agric Food Chem ; 52(25): 7518-24, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15675798

RESUMO

Phytase is used commercially to maximize phytic acid degradation and to decrease phosphorus levels in poultry and swine manure. To determine phytase content in edible mushrooms, basidiomata of Agaricus bisporus and three specialty mushrooms (Grifola frondosa, Lentinula edodes, and Pleurotus cornucopiae) and spent mushroom substrate (SMS) were surveyed. Enzyme activity ranged from 0.046 to 0.074 unit/g of tissue for four A. bisporus types (closed and open whites and closed and open browns) grown at The Pennsylvania State University's Mushroom Test Demonstration Facility (MTDF). The addition of various nutrient supplements to phase II mushroom production substrate did not alter phytase activity in A. bisporus. Portabella mushrooms (open brown) obtained from a commercial farm had significantly higher levels of phytase activity (0.211 unit/g of tissue) compared to A. bisporus grown at the MTDF. Of the specialty mushrooms surveyed, maitake (G. frondosa) had 20% higher phytase activity (0.287 unit/g of tissue) than commercial portabella mushrooms. The yellow oyster mushroom (P. cornucopiae) ranked second in level of phytase activity (0.213 unit/g of tissue). Shiitake (L. edodes) contained the least amount of phytase in basidiomata (0.107 unit/g of tissue). Post-crop steam treatment (60 degrees C, 24 h) of SMS reduced phytase activity from 0.074 to 0.018 unit/g. Phytase was partially purified from commercially grown portabella basidiomata 314-fold with an estimated molecular mass of 531 kDa by gel filtration chromatography. The optimum pH for activity was 5.5, but appreciable phytase activity was observed over the range of pH 5.0-8.0. Partially purified A. bisporus phytase was inactivated following a 10-min incubation at > or =60 degrees C.


Assuntos
6-Fitase/metabolismo , Agaricus/enzimologia , Grifola/enzimologia , Pleurotus/enzimologia , Cogumelos Shiitake/enzimologia , Agaricus/crescimento & desenvolvimento , Grifola/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Pleurotus/crescimento & desenvolvimento , Cogumelos Shiitake/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...