Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(8): e5109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38989563

RESUMO

Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride toward achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.


Assuntos
Enzima de Conversão de Angiotensina 2 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/genética , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Humanos , Sítios de Ligação , COVID-19/virologia , COVID-19/genética , Ligação Proteica , Inteligência Artificial
2.
EMBO J ; 43(11): 2198-2232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649536

RESUMO

Nuclear pore complex (NPC) biogenesis is a still enigmatic example of protein self-assembly. We now introduce several cross-reacting anti-Nup nanobodies for imaging intact nuclear pore complexes from frog to human. We also report a simplified assay that directly tracks postmitotic NPC assembly with added fluorophore-labeled anti-Nup nanobodies. During interphase, NPCs are inserted into a pre-existing nuclear envelope. Monitoring this process is challenging because newly assembled NPCs are indistinguishable from pre-existing ones. We overcame this problem by inserting Xenopus-derived NPCs into human nuclear envelopes and using frog-specific anti-Nup nanobodies for detection. We further asked whether anti-Nup nanobodies could serve as NPC assembly inhibitors. Using a selection strategy against conserved epitopes, we obtained anti-Nup93, Nup98, and Nup155 nanobodies that block Nup-Nup interfaces and arrest NPC assembly. We solved structures of nanobody-target complexes and identified roles for the Nup93 α-solenoid domain in recruiting Nup358 and the Nup214·88·62 complex, as well as for Nup155 and the Nup98 autoproteolytic domain in NPC scaffold assembly. The latter suggests a checkpoint linking pore formation to the assembly of the Nup98-dominated permeability barrier.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Anticorpos de Domínio Único , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Humanos , Anticorpos de Domínio Único/metabolismo , Animais , Xenopus , Xenopus laevis , Células HeLa
3.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36482980

RESUMO

Understanding how proteins evolve under selective pressure is a longstanding challenge. The immensity of the search space has limited efforts to systematically evaluate the impact of multiple simultaneous mutations, so mutations have typically been assessed individually. However, epistasis, or the way in which mutations interact, prevents accurate prediction of combinatorial mutations based on measurements of individual mutations. Here, we use artificial intelligence to define the entire functional sequence landscape of a protein binding site in silico, and we call this approach Complete Combinatorial Mutational Enumeration (CCME). By leveraging CCME, we are able to construct a comprehensive map of the evolutionary connectivity within this functional sequence landscape. As a proof of concept, we applied CCME to the ACE2 binding site of the SARS-CoV-2 spike protein receptor binding domain. We selected representative variants from across the functional sequence landscape for testing in the laboratory. We identified variants that retained functionality to bind ACE2 despite changing over 40% of evaluated residue positions, and the variants now escape binding and neutralization by monoclonal antibodies. This work represents a crucial initial stride towards achieving precise predictions of pathogen evolution, opening avenues for proactive mitigation.

4.
BMC Infect Dis ; 22(1): 828, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352359

RESUMO

BACKGROUND: The incubation period of an infectious disease is defined as the elapsed time between the exposure to the pathogen and the onset of symptoms. Although both the mRNA-based and the adenoviral vector-based vaccines have shown to be effective, there have been raising concerns regarding possible decreases in vaccine effectiveness for new variants and variations in the incubation period. METHODS: We conducted a unicentric observational study at the Hospital Universitari de Bellvitge, Barcelona, using a structured telephone survey performed by trained interviewers to estimate the incubation period of the SARS-CoV-2 Delta variant in a cohort of Spanish hospitalized patients. The distribution of the incubation period was estimated using the generalized odds-rate class of regression models. RESULTS: From 406 surveyed patients, 242 provided adequate information to be included in the analysis. The median incubation period was 2.8 days (95%CI: 2.5-3.1) and no differences between vaccinated and unvaccinated patients were found. Sex and age are neither shown not to be significantly related to the COVID-19 incubation time. CONCLUSIONS: Knowing the incubation period is crucial for controlling the spread of an infectious disease: decisions on the duration of the quarantine or on the periods of active monitoring of people who have been at high risk of exposure depend on the length of the incubation period. Furthermore, its probability distribution is a key element for predicting the prevalence and the incidence of the disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/prevenção & controle , Espanha/epidemiologia , Estudos de Coortes , Período de Incubação de Doenças Infecciosas , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...