Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Biobehav Rev ; 151: 105249, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257712

RESUMO

Infant survival relies on rapid identification, remembering and behavioral responsiveness to caregivers' sensory cues. While neural circuits supporting infant attachment learning have largely remained elusive in children, use of invasive techniques has uncovered some of its features in rodents. During a 10-day sensitive period from birth, newborn rodents associate maternal odors with maternal pleasant or noxious thermo-tactile stimulation, which gives rise to a preference and approach behavior towards these odors, and blockade of avoidance learning. Here we review the neural circuitry supporting this neonatal odor learning, unique compared to adults, focusing specifically on the early roles of neurotransmitters such as glutamate, GABA (Gamma-AminoButyric Acid), serotonin, dopamine and norepinephrine, in the olfactory bulb, the anterior piriform cortex and amygdala. The review highlights the importance of deepening our knowledge of age-specific infant brain neurotransmitters and behavioral functioning that can be translated to improve the well-being of children during typical development and aid in treatment during atypical development in childhood clinical practice, and the care during rearing of domestic animals.


Assuntos
Odorantes , Bulbo Olfatório , Ratos , Animais , Animais Recém-Nascidos , Ratos Long-Evans , Bulbo Olfatório/fisiologia , Aprendizagem da Esquiva , Neurotransmissores , Olfato/fisiologia
2.
Learn Mem ; 29(10): 349-354, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180128

RESUMO

Temporal contingency is a key factor in associative learning but remains weakly investigated early in life. Few data suggest simultaneous presentation is required for young to associate different stimuli, whereas adults can learn them sequentially. Here, we investigated the ability of newborn rabbits to perform sensory preconditioning and second-order conditioning using trace intervals between odor presentations. Strikingly, pups are able to associate odor stimuli with 10- and 30-sec intervals in sensory preconditioning and second-order conditioning, respectively. The effectiveness of higher-order trace conditioning in newborn rabbits reveals that very young animals can display complex learning despite their relative immaturity.


Assuntos
Condicionamento Clássico , Condicionamento Palpebral , Animais , Animais Recém-Nascidos , Condicionamento Psicológico , Aprendizagem , Odorantes , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...